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We simulated the use of simultaneous sinusoidal changes of inspired O, and N,O (Williams
et al., | Appl Physiol, 1994; 76: 2130-9) at fractional concentrations up to 0.3 and 0.7, respect-
ively, to estimate FRC and pulmonary blood flow (PBF) during anaesthesia, using O, as an
insoluble indicator. Hahn’s approximate equations, which neglect the effect of pulmonary
uptake and excretion on expiratory flow, estimate dead space and alveolar volume (V,) with
systematic errors less than 10%, but yield systematic errors in PBF which are approximately
proportional to Fiy o in magnitude. A correction factor (I — P)~' for Hahn’s equations for PBF
(where P is the mean partial pressure of the soluble indicator) reduces the dependence of PBF
estimates on Fiy,o, and the solution of equations describing the simultaneous mass balance of
both indicators yields accurate results for a wide range of mean Fiy,0. However, PBF estimates
are sensitive to measurement errors and a third gas must be present to ensure that the

indicator gases behave independently.

Br J Anaesth 2000; 85: 371-8

Keywords: measurement techniques, pulmonary arterial; lung, blood flow; lung, dead space;

lung, volume; computers

Accepted for publication: April 17, 2000

The sinusoidal frequency response technique for estimating
pulmonary blood flow (PBF) was described by Zwart et al.'
in 1976. The method has recently been extended by
Williams ez al.? in 1994 to allow simultaneous estimation
of dead space, alveolar volume and PBF using insoluble
(argon) and soluble (nitrous oxide: N,O) indicator gases
modulated in anti-phase at low mean inspired fractions. An
important advantage of this technique is that the sinusoidal
perturbation of the soluble indicator gas fraction in mixed
venous blood is attenuated and can be ignored if the
modulation frequency is high enough. In their analysis,
Zwart et al.' imply that the sinusoidal forcing technique
depends only on the modulation and is independent of the
mean inspired fraction of the soluble indicator gas. Barton
et al.** recognized the problem associated with large mean
fractions of N,O and suggested that the mean inspired
fraction should be kept below 0.1 but did not assess the
magnitude of the errors that result if the mean indicator
fraction goes above 0.1.

Oxygen (0O,) has a very low blood—gas partition coeffi-
cient of 0.024 in fully saturated arterial blood. In healthy
well oxygenated lungs, variations in alveolar PO, result in
very small variations in pulmonary venous O, content when

high haemoglobin saturation (P0,>100 mm Hg) is main-
tained. If F1o, is varied, then the O, flux from the airway into
the alveolar compartment can be considered to consist of
two components: a constant unidirectional flux which brings
mixed venous blood to arterial saturation; and a varying bi-
directional flux which changes the fraction of O, in the
alveolar compartment. Hahn® showed that if arterial
haemoglobin is well saturated and oxygen uptake is
constant, the constant unidirectional flux may be ignored
and O, can be used as an approximately insoluble indicator
gas for the measurement of lung volumes. This technique
has been verified experimentally in healthy adults.®

It would be convenient if N,O and O, could be used as
indicator gases in the same concentrations as they are
commonly used during anaesthesia. We analysed the
sinusoidal technique theoretically and used detailed com-
puter modelling of dynamic multi-component gas exchange
to investigate the systematic errors in estimates of dead
space, alveolar volume and PBF that result when the
sinusoidal technique is used as published with mean
inspired fractions of indicator gases (O, and N,O) greater
than 10% as is commonly the case during general anaes-
thesia.
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Patients and methods

Theoretical analysis

Equation (A1) (see Appendix) gives the mass balance of a
soluble indicator gas in a perfectly mixed, single-compart-
ment lung subjected to continuous ventilation and perfusion
(Fig. 1). If both the mean concentration and the sinusoidal
amplitude of the indicator gas are small, then equation (A1)
can be simplified to yield a linear first-order differential
equation (equation (A4)), as previously shown.? Neglecting
the effects of the mean indicator concentration is equivalent
to assuming that inspiratory and expiratory flows are
identical,3 and causes PBF to be underestimated by the
factor (1 — P) where P is the mean fraction of the soluble
gas. The complete mass balance equation also contains a
non-linear term which can be neglected when the modula-
tion amplitude is small. A steady-state sinusoidal solution to
the complete mass balance equation is derived (equation
(A10)) to estimate PBF when the fraction of the soluble
indicator gas is high and alveolar volume is known exactly.
Alveolar volume can be estimated simultaneously from
measurements of the partial pressure of an insoluble
indicator gas modulated in anti-phase to the soluble
indicator using equation (A8). However, it is preferable to
consider the mass balances of the two indicator gases
simultaneously. Equation (Al3) is a frequency domain
steady-state sinusoidal solution to the simultaneous mass
balance equations (A1l) and (A12), which can be solved
simultaneously with equation (A10) to yield estimates of
both alveolar volume and PBF.

If a lung is ventilated with a binary mixture of a soluble
and insoluble indicator gas, then the sum of the partial
pressures of the two gases always equals barometric
pressure, if the small effects of carbon dioxide (CO,) and
water vapour are ignored. Any excursion of the partial
pressure of one component is matched by an equal and
opposite excursion of the partial pressure of the other
component. Hence, in the alveolar gas, the magnitude of the
peak sinusoidal excursion of the partial pressure of the
insoluble gas is equal to that of the partial pressure of the
soluble gas, regardless of their mean concentrations. Only
one independent measurement can be made from a
sinusoidally oscillating binary gas mixture and it is not
possible to estimate two unknown parameters. Therefore, a
binary mixture of soluble and insoluble indicator gases (e.g.
the commonly used mixture of O, and N,O) cannot be used
to monitor alveolar volume and PBF simultaneously.

Computer simulation

Computer simulation was used to investigate the systematic
errors introduced by the following assumptions in the
derivation of Hahn’s equations: (i) the indicator gases are
present at low concentrations; (ii) the absorption of the
soluble indicator gas does not affect expiratory flow; (iii)
each indicator gas behaves independently of all the other
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Fig 1 Diagrammatic representation of the computer model of the
respiratory system. Vi, Vg: total inspiratory and expiratory flows,
respectively; Va Vag: alveolar inspiratory and expiratory flows,
respectively; P, Pg, Pg: partial pressure of indicator in inspiratory,
alveolar and mixed expired gases, respectively; Qp: PBF.

gases in the lung. The computer model (see Appendix)
comprises four simultaneous differential equations describ-
ing the mass balance of four gases (O,, CO,, N, and N,O) in
a single perfectly mixed constant-volume alveolar compart-
ment subjected to continuous inspiratory ventilation V; with
a mixture of O,, N, and N,O. These equations describe the
complete mass balance of the four gases and do not rely on
the above assumptions. N,O is exchanged with a constant
PBF (Qp) and the mixed venous partial pressure of N,O is
kept constant at the mean inspired value. Hence, once
steady-state sinusoidal equilibrium is reached by the model,
the mean N,O flux becomes zero. The body compartment is
assumed to be large enough to filter out all perturbations in
gas concentrations.” A proportion (30%) of the total
inspiratory gas flow bypasses the alveolar compartment
and mixes continuously with expired gas to represent dead
space ventilation, leaving a net inspiratory alveolar flow of
Var. Shunted blood flow, lung tissue absorption of N,O and
the effects of water vapour are not included in the model as
they do not influence the validity of this study. Constant
oxygen consumption is modelled by the removal of oxygen
from the alveolar compartment at a rate of 250 ml min™".
CO, is added to the alveolar compartment at a rate equal to
the O, consumption (RQ=1). Both N, (blood—gas partition
coefficient=0.012) and O, (blood—-gas partition coefficient
in saturated blood=0.024) are assumed to be insoluble, and
the blood—gas partition coefficient of N,O is assumed to be
0.47. The sum of gas partial pressures is equal to atmos-
pheric pressure at all times.

The model was implemented using Matlab and Simulink
software (The MathWorks, Natick, MA, USA) and solved
with the integration routine ‘odel5’ with variable step size
and an absolute tolerance parameter of 1X107°.

The inspired gas composition was modulated sinusoidally
with a peak-to-peak amplitude of 0.02 and a period of 120 s
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which has been suggested to be the optimum period for this
technique.® Alveolar volume was maintained constant at
2.5 litres by adjusting the alveolar expiratory flow Vg at
each time step. The initial values of the gas fractions in the
lungs were set to the mean inspired values and the model run
for 1200 s to achieve steady-state sinusoidal conditions. The
relative amplitudes and phases of the sinusoidal components
of the inspired, mixed expired and end-expired indicator gas
fractions were estimated from the last 120 s of the
simulation by fitting the expression Psin (wf + @) to
simulated partial pressure values using the Gauss—Newton
method (Matlab, The MathWorks), and these values were
used to recover dead space using equation (A9). Alveolar
volume and PBF were estimated from the amplitudes of the
sinusoids using the following sets of equations (see
Appendix): (i) equations (A9), (A8) and (A6) evaluated
sequentially; (ii) equations (A9), (A8) and (A10) evaluated
sequentially; and (iii) evaluation of equation (A9) followed
by simultaneous solution of equations (A10) and (A13) by
an interval bisection technique (Matlab, The MathWorks).

The simulation study was conducted in two parts using
inspired gas mixtures comprising N,O, O, and N, under the
following conditions.

(i) N,O was oscillated in anti-phase with N, such that
Fin,0 + Fiy, was constant. Flp, was not modulated. The
mean Fly, was kept constant at 0.01 while the mean
Fin,o was first set to 0.01 and then varied from 0.1 to
0.7 in steps of 0.1. Fip, was selected to make up the
balance. This condition represents the case in which an
inert gas (in this case N,) is used as an insoluble
indicator gas at low concentration, and N,O as a soluble
indicator gas at concentrations ranging between those
typical of an indicator gas and those typical of
an anaesthetic agent. These conditions were used
to evaluate the performance of equations (A9), (AS8),
(A6) and (A10) as a function of mean Fiyno
when the mean inspired fraction of the insoluble gas
was low.

(i) N,O was oscillated in anti-phase with O, such that
Fix,0 + Flp, was constant. The mean Fip, took values of
0.2, 0.25 and 0.3, while mean Fiy,o was first set to 0.01
and then varied from 0.1 to 0.7 in steps of 0.1. FIy, was
selected to make up the balance and was not modulated.
This condition represents the case in which O, is used
as an insoluble indicator gas at physiological concen-
trations and N,O as a soluble indicator gas at concen-
trations ranging between that of a typical indicator gas
and that of an anaesthetic agent. The per unit sensitiv-
ities of PBF to errors in alveolar volume and gas partial
pressure measurements, and of alveolar volume to
errors in partial pressure measurements were calculated
numerically using a forward difference numerical
technique as follows. If yy = y(xo) and y; = y(xg + Ax)
where Ax is small compared with x(, then the per unit
sensitivity of y to errors in x is given by

(1 = 0)/¥1
A)C/X() '

Each condition was simulated with PBF at values of 1, 5
and 10 litre min~" and the recovered PBF compared with the
true value. Only systematic errors (referred to in this report
simply as ‘errors’) related to approximations in the simpli-
fied equations were assessed.

Results

The amplitudes and phases of the inspiratory, alveolar and

mixed expiratory sinusoids were recovered with standard

error of regression less than 2.5X107° atmospheres in all
cases. The results obtained in the two parts of this study are
as follows.

(1) When N, at a mean inspired fraction of 0.01 was used
as the insoluble indicator gas, the absolute values of the
systematic errors in estimates of dead space (equation
(A9)) and alveolar volume (equation (A8)) were less
than 0.5% for 0.01 <mean Fiy,o <0.70. PBF calculated
from simulation results by the approximate equation
(equation (A6)) and plotted in Fig. 2 exhibited system-
atic errors which were negative and increased in
magnitude in approximate proportion to increasing
mean Fiyo. The systematic errors in the corrected
equation (equation (A10)) were substantially smaller
(less than 3.5%).

(ii) When N,O was oscillated in anti-phase with O,, at
mean Flp, of 0.2-0.3, systematic errors in dead space
were less than 2% in all cases. However, systematic
errors in alveolar volume (equation (A8)), shown in Fig.
3, increased strongly with increasing Flp, and with
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Fig 2 Systematic errors in PBF estimates when a low-concentration
insoluble tracer gas (N,) is used to monitor alveolar volume, and various
mean concentrations of N,O with O, as balance are used to monitor Qp.
(i) Equations (A9), (A8) and (A6) evaluated sequentially. (ii) Equations
(A9), (A8) and (A10) evaluated sequentially. PBF, pulmonary blood
flow.
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Fig 3 Systematic errors in estimated values of alveolar volume when the
mean Flo, was 0.20, 0.25 and 0.30, and PBF was 1, 5 and 10 1 min~".
Equations (A9) and (A7) were evaluated sequentially to estimate VA.
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Fig 4 Systematic errors in PBF estimates when O, (mean Fip, 0.25) is
used as the insoluble tracer gas and N,O as the soluble gas with N, as
balance using: (i) equations (A9), (A8) and (A6) evaluated sequentially;
(ii) equations (A9), (A8) and (A10) evaluated sequentially; and (iii)
evaluation of equation (A9) followed by simultaneous solution of
equations (A10) and (A13) by interval bisection.

increasing PBF. PBF error depended weakly on the
mean Fi, and for clarity is shown in Fig. 4 for a mean
Fip, of 0.25 only. Equation (A10) performed substan-
tially better than the approximate equation (equation
(A6)) at low Fiy,o values, but deteriorated at high
Fin 0. Figure 5, in which the sensitivity of PBF to errors
in alveolar volume is plotted, suggests that the errors in
PBF in curves (ii) in Fig. 4 were related to errors in
alveolar volume. Equations (A10) and (A13) solved
simultaneously yielded estimates of alveolar volume
and PBF (curves (iii) in Fig. 4) within 1% of the true
values for all mean concentrations of indicators studied.
However, the sensitivity of this technique to measure-
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Fig 5 Per unit sensitivity of estimated PBF (using simultaneous equation
(A10) to errors in alveolar volume calculated using a forward difference
technique for Fip, = 0.25 and balance N).
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Fig 6 Per unit sensitivity of estimated PBF (using simultaneous equations
(A10) and (A13)) to errors in the ratios of the magnitudes of the partial
pressure of the indicator gases calculated using a forward difference
technique for Fip, = 0.25 and balance N,. The sensitivities to O, and
N,O are almost identical, therefore only one curve is plotted at each PBF.

ment error is large, particularly when the PBF is low
(Fig. 6). The sensitivity to measurement error of
alveolar volume estimates obtained by simultaneous
solution of equations (A10) and (A13), shown in Fig. 7,
is substantially smaller.

Discussion

We have shown that while approximate solutions to the
steady-state sinusoidal mass balance of a soluble indicator
gas yield acceptable estimates when the mean concentra-
tions of the indicators are small, modified solutions allow a
greater range of mean indicator concentrations to be used.

The difference between the performance of equations
(A6) and (A10) in Fig. 2 can be explained as follows. When
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Fig 7 Per unit sensitivity of estimated alveolar volume (using
simultaneous equations (A10) and (A13)) to errors in the ratios of the
magnitudes of the partial pressures of the indicator gases calculated using
a forward difference technique for Fip, = 0.25 and balance N».

the alveolar N,O concentration exceeds its mean value, N,O
flows from the alveolar gas into the blood, causing
expiratory flow to decrease. Similarly, a decrease in alveolar
N,O concentration causes expiratory flow to increase.
Hence, there is a sinusoidal component of alveolar
expiratory flow superimposed on the mean flow. In a
subject in whom FRC is determined by the balance of elastic
and muscular forces, we would expect to observe an
equivalent behaviour superimposed on tidal gas move-
ments. Expiratory flow carries N,O out of the alveoli at a
rate proportional to the absolute alveolar N,O concentra-
tion, hence the sinusoidal component of the expiratory flow
causes a sinusoidal flux of N,O to be superimposed on the
mean expiratory flux, disturbing the mass balance of N,O in
the lung in proportion to the mean N,O fraction. In equation
(A10) this effect appears as the modifying term (1 — P)™".
When the inspired fraction of N,O approaches 1 (P = 1),
PBF causes no change in the alveolar partial pressure of
N,O and hence a 100% error results. The simplified mass
balance equation (equation (A4)) is strictly true only when
the indicator gas is present at negligibly low concentrations
and modulated at very low amplitudes. Although the
corrected equation apparently performs well under some
conditions in the model study (curves (ii) in Fig. 2), the
sensitivity to errors in measurements of the soluble gas
concentration increases in inverse proportion to (1 — P),
hence this approach is impractical at high P.

Equation (A13) is a complex (magnitude and phase)
solution to the steady-state sinusoidal mass balance in the
alveolar compartment when a soluble gas is modulated in
anti-phase to an insoluble gas in the presence of at least one
additional insoluble gas. If PBF is known, then equation
(A13) can be solved for alveolar volume, or equations (A13)
and (A10) can be solved simultaneously for alveolar volume
and PBF when a third gas is present in the lungs.

When a non-respiring lung is ventilated with a modulated
binary mixture of a soluble and insoluble indicator gas at
constant barometric pressure, the modulation amplitudes of
the indicators cannot be different. Hence, only one
independent measurement can be made from which only
one unknown can be estimated. In a respiring lung, the
presence of CO, transforms the alveolar gas into a ternary
mixture, and therefore in principle both volume and blood
flow estimates are possible. However, the large sensitivity to
measurement errors (Fig. 6) makes this approach imprac-
tical.

Figure 3 shows that when the insoluble indicator gas (in
this case O,) has a mean concentration greater than is
typically used for indicator gases and is modulated at low
amplitude in anti-phase with a soluble gas, then substantial
but perhaps clinically acceptable (less than 10%) systematic
errors in lung volume estimates result, even when the
soluble gas is at a low mean concentration. These errors are
approximately proportional to PBF and mean Fip, and are
caused by the sinusoidal component of the expiratory flow.
These observations are related to the last term in equation
(A12) which is neglected in equation (A8). When the
interdependence between the indicator gases is not neg-
lected (equation (A13)) the systematic errors are less than
1%, although the magnitude of the sensitivity to errors in O,
measurements is greater than unity (Fig. 7). The sensitivity
to errors in soluble gas measurements exceeds unity only
when Fiy,o >0.5.

When the insoluble indicator gas is used at physiological
inspired fractions (in this case O, at 0.20-0.30), the errors in
PBF estimated by equation (A6) (Fig. 4) are similar in
pattern but slightly larger in magnitude than those obtained
with N, as insoluble indicator at an inspired fraction of 0.01
(Fig. 2). The negative bias of the corrected equation (A10)
(curves (ii) in Fig. 4) results from errors in alveolar volume
estimates (Fig. 3). Figure 5 shows that estimates obtained
with equation (A10) are extremely sensitive to errors in
alveolar volume under the conditions of this study, particu-
larly at high Fiy,o and low cardiac output. When alveolar
volume and PBF are estimated simultaneously from noise-
free measurements of soluble and insoluble gases modu-
lated in anti-phase, then the systematic errors in PBF are
small. However, the sensitivity analysis (Fig. 6) suggests
that this technique is extremely sensitive to measurement
error, particularly at low values of PBF.

This study has identified an upper limit on the perform-
ance of the sinusoidal forcing technique under idealized
conditions, but has not examined all possible causes of
error. Effects that were ignored, including non-equilibrium
of the soluble indicator gas throughout the body, the
solubility of the indicators in lung tissue, pulmonary shunt
and variations in O, consumption and in RQ, are likely to
increase the uncertainty in estimates of cardiopulmonary
variables. Pulmonary disease leading to maldistribution of
ventilation and V/Q mismatch, and variations in FRC during
anaesthesia are also likely to cause additional systematic
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and random errors. Tidal breathing, the limited dynamic
response of gas analysers and measurement noise limit the
accuracy with which mixed expired and alveolar gas
composition can be measured, and hence also adversely
affect the uncertainty in the estimates, particularly when the
alveolar plateau slopes steeply.

Conclusions

If soluble (N,O) and insoluble indicator gases are used at
low concentrations, and modulated at low amplitudes, then
dead space, alveolar volume and PBF can be monitored
simultaneously using simple closed-form equations and the
magnitude of the per unit error in the PBF estimate is
approximately equal to the inspired fraction of the soluble
indicator. The (1 — P )’l correction factor allows the closed-
form equations to be used with mean alveolar N,O fractions
up to ~0.7 if the mean inspired fraction of the insoluble gas
is low. If the mean inspired fraction of the insoluble gas is
high (0.2-0.3), then estimates of PBF are biased low by
~20% when the mean inspired fraction of N,O is low. In this
case the dependence of estimates of PBF on mean Fly o is
reduced by the (1 — P y~! correction factor for mean FINZO
less than ~0.3 and simple correction for the bias is possible.
Simultaneous solutions to the mass balance of the two
indicator gases allow alveolar volume and PBF to be
estimated from noise-free measurements when the indicator
gases are used at any mean concentrations in a ternary gas
mixture, but the results are sensitive to measurement error,
particularly at low PBF and high N,O concentrations.
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Appendix

Glossary of symbols

Symbol Description Unit

N Laplace variable s

t Time S

F Fraction —

P Mean partial pressure Atmospheres
P(1) Partial pressure (time variable) Atmospheres
0 Pulmonary blood flow litres s~
1 Volume litres

1% Volumetric gas flow litres s~
[ Phase angle radians

T Time constant of gas turnover in lungs S

A Ostwald blood—gas partition coefficient —

® Frequency rad s~
Subscripts

atm Atmospheric E Expiratory

m  Metabolic gas consumption or production I Inspiratory

p  Pulmonary V Mixed venous

A Alveolar 1 Soluble indicator gas
D  Dead space 2 Insoluble indicator gas

Equations for recovering lung volumes and
pulmonary blood flow

With reference to the model in Fig. 1, the mass balance of a
single indicator gas with blood—gas partition coefficient A in
a perfectly mixed single-compartment lung is given by:

VAEPA(I) = VAIPI(I) — VAE(t)PA(f) + /\QP[Pv(l) — PA(l‘)}

dr
(A1)

where Pi(t), PA(f) and Py(f) are the time varying inspired,
alveolar and mixed venous partial pressures of the indicator
gas. Alveolar volume V, and continuous inspiratory alveo-
lar ventilation (V,;) are assumed to be constant. Vag(f) is
expiratory ventilation. Storage of indicator gas in lung tissue
and pulmonary capillary blood is ignored.

In the absence of metabolic gas exchange, or if the
respiratory quotient is unity, the alveolar expiratory flow
can be written as:

Vap(t) = Var - pr(PA(Z) - Py(0)

where XQP(P A(f) — Py(1)) is the volumetric rate of uptake of
the soluble indicator gas (in this case N,O) by the
pulmonary blood.

Under steady-state sinusoidal conditions when the indi-
cator gas is equilibrated throughout the instrumentation and
all the tissues of the subject, then Py(f) and PA(f) can be
written as Py(f) = P + AP\(f), Pa(f) = P + APA(2), respect-
ively, where P is the mean partial pressure which is equal in

(A2)
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all compartments, and AP(f) indicates the time-varying
perturbation about the mean in each compartment. If the
frequency of the sinusoid is high, the perturbations are
strongly attenuated in the systemic circulation, and mixed
venous content of the indicator gas is constant and
APy(t) = 0.

Substituting for Var, Pr, Pa and Py in equation (A1) and
introducing the alveolar time constant T = ValVar yields:
TdSAPA(z) — APy(1) — APA(1) — L2 AAPA() (1 = P) + 2 A (AP (1))

t Var Vai

(A3)

If the perturbation amplitude is small and P << 1, then
equation (A3) reduces to:

T%PA(I‘) = Pl(l) — PA([)(I +@)

(A4)
Equation (A4) is a linear first-order differential equation.
Steady-state sinusoidal modulation of P(?) at a frequency ®
rad s™' results in sinusoidal perturbation of P, with
amplitude given by:

P _ A0\ o)
P ((l-i- s ) + W (AS)
Solving for Qp yields:

o=V (1P ) -

Op = 5\ <<‘PA‘ w TL) 1> (A6)

If the inspired indicator is insoluble (A = 0) and the
concentration of the soluble gas is negligible, then equation
(A5) reduces to:

P

p=(1+62) (A7)

Solving equation (A7) for alveolar volume yields:

1
1% P2 ’

VA=—A((—I> - 1)
w PA

Alveolar ventilation V, is estimated by subtracting dead
space ventilation Vp from the total ventilation Vg. Dead
space ventilation is given by:?

(A8)

Vb |Pglcos®p — |Palcos®a
VE - P[ — |PA‘COS(DA

(A9)

where @, and ®f are the phase differences between the
inspiratory and alveolar, and inspiratory and mixed
expiratory sinusoids, respectively, and Pg is the amplitude
of the sinusoidally modulated mixed expired partial pres-

sure of the indicator gas. Equation (A9) is a form of the
standard Bohr dead space equation.

Therefore, if the inspiratory concentration of an insoluble
indicator gas is modulated sinusoidally about an arbitrary
mean value and measurements of the amplitude and phase
of the alveolar and mixed expiratory concentrations are
made, dead space ventilation can be recovered using
equation (A9) and alveolar ventilation estimated. Alveolar
volume is estimated with equation (A8) and, if a soluble gas
is oscillated simultaneously at low mean concentration,
pulmonary blood flow can be estimated using equation (A6).

If P is not small then equation (A6) becomes:

o Va P2 oo, %_
QP_)\(I—P)((‘PA WTL) 1)

Most of the Oxford work®®® subsequent to Barton’s
papers’ * is based on equations (A4)—(A9).

(A10)

Simultaneous solution

Equation (A10) allows the estimation of pulmonary blood
flow from measurements of inspired and alveolar partial
pressures of a sinusoidally modulated soluble gas at any
mean partial pressure less than one atmosphere, if 7T is
known. If we wish to estimate V4 simultaneously from
measurements of an insoluble indicator gas modulated in
anti-phase with the soluble gas, then the mass balances of
the two gases must be considered simultaneously. Using the
subscripts 1 and 2 to denote the soluble and insoluble gases,
respectively, and neglecting second-order small terms,
equation (A3) can be written as:

T%APAI (1) = (APW (1) — AP (1)) — %’] AAPA(1)(1 — Py)

(A11)

for the soluble gas and

ngAPAz(l‘) = (APIQ(I’) — APAz(l‘)) +&)\APA|(I)F2
t Val

(A12)
for the insoluble gas. Equations (A11) and (A12) must be
satisfled simultaneously. Transforming to the Laplace
domain under steady-state sinusoidal conditions and noting
that APy, (f) = — AP»(f) when the soluble and insoluble gases
are modulated in anti-phase, equations (A10) and (A11) can
be solved simultaneously to yield:

APfZ(S) sVa + VAI sV + VAI + /\Qp(l — Fl)

(A13)

AP, (5) ( Var ) (SVA+VA1+)\QP(1P1 P2)>

where s is the Laplace variable and the superscript
indicates a transformed variable. Under steady-state sinu-
soidal conditions s = i®m, where i = v/—1. Equation (A13)
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allows V4 to be estimated from the magnitude of the ratio
AP x5/ APy, if Q, is known. Both V, and Q, can be estimated
if magnitude and phase components of equation (A13) are
solved simultaneously. Alternatively, V5 and Qp can be
estimated by solving equation (A10) and the magnitude
component of equation (A13) simultaneously.

The model

The model is based on four simultaneous equations
describing the complete mass balance of O,, CO,, N,O
and N, in a constant-volume, single-compartment well
mixed lung at constant temperature and pressure. No
approximations are made other than to assume that all the
gases obey the perfect gas law.

d . R .
& Vo, = Plo, (1)Var — Pao, (t)Vag — Vimo,

d . . .
a VACOz = PICO2 (t) Var — PACO2 (l‘) Vag — Vmcoz

d ) ) ,
3 Van,o = Pinyo(t)Var — Pax,o(f)Vag + AQp (PVx,0 — PAno(t))

d . .
a VAN2 = PIN2 (I) Var — PAN2 (Z)VAE

N, is assumed to be insoluble. PVy,o is assumed to be
constant and equal to the mean inspired partial pressure of
N,. The total pressure in the alveolar compartment is always
equal to atmospheric pressure:

PAo, () + Pax, () + Pax,0(f) + Paco, () = Pam

All gases are assumed to be ideal. For the jth gas:
VAj(t)Patm
P (1) = —=—=—"——
Aj( ) Z VAk
k
Inspiratory alveolar ventilation is given by:

Var = (1 — Fp)W;

Expiratory alveolar ventilation (V,g) is adjusted in each
time step to maintain constant alveolar volume.
Total expiratory ventilation is given by:

VE(I) = VAE(Z) +FDV1

In the mixed expired gas the partial pressure of the jth
component is given by:

PE/([) _ PAj(t)VAE(t)V:(ng(I)FDVI(t)
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