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Effects of posture on blood flow diversion by hypoxic pulmonary 
vasoconstriction in dogs† 

S. M. WALTHER, K. B. DOMINO AND M. P. HLASTALA 

 
Summary 
We used differential excretion of sulphur hexaflu- 
oride from the left and right lung to measure 
blood flow diversion by hypoxic pulmonary 
vasoconstriction (HPV) in the prone and supine 
positions in dogs (n�9). Gas exchange was 
assessed using the multiple inert gas elimination 
technique. Blood flow diversion from the hypoxic 
(3% oxygen) left lung was mean 70.7 (SD 11.2) % 
in the supine compared with 57.0 (12.1) % in the 
prone position (P�0.02). The supine position was 
associated with increased perfusion to low VA/Q 
regions (P�0.05). The increased flow diversion 
with hypoxia in the supine position was associ- 
ated with more ventilation to high VA/Q regions 
(P�0.05). We conclude that flow diversion by 
hypoxic pulmonary vasoconstriction is greater in 
the supine position. This effect could contribute 
to the variable response in gas exchange with 
positioning in patients with ARDS. (Br. J. 
Anaesth. 1998; 81: 425�429). 
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Hypoxic pulmonary vasoconstriction (HPV) is one 
mechanism by which matching of ventilation and 
perfusion takes place. Pulmonary arteries constrict 
progressively when exposed to hypoxia.1 Local oxy- 
gen tension in small arterioles (approximately less 
than 500 �m in diameter) is determined mainly by 
oxygen tension in alveolar gas. Thus when hypoxic 
gas enters distal air spaces, vasoconstriction diverts, 
flow to other, presumably better oxygenated, lung 
regions. The main determinants of this redistribution 
of flow are, apart from local oxygen concentration, 
interactions between arterial, alveolar and interstitial 
pressures, as outlined in the zonal perfusion model of 
Hughes and colleagues.2 However, this model has 
been challenged by a growing number of observa- 
tions that show large isogravitational perfusion het- 
erogeneity3–6 and lack of, or minimal, gravitational 
gradients in the prone position.5–8 Detailed studies of 
pulmonary perfusion suggest increased conductance 
to flow in dorsal lung regions.9 The reason for this 
dorsal flow bias could be differences in ventral–dor- 
sal vasoreactivity inherent in the microvasculature10 
or regional differences in branching anatomy.11 

The tendency of dorsal lung regions to accept more 
flow enhances gravitational redistribution of perfu- 
sion in the supine position. Increased dorsal flow con- 
ductance may balance the influence of gravity in the 

prone position, thus promoting more uniform flow 
distribution that is typically seen in the prone posi- 
tion.5 12 We hypothesized that the mechanisms respon- 
sible for this asymmetric response to positioning 
might interact differently with HPV in the prone and 
supine positions. As many studies show improved gas 
exchange with prone positioning of patients with 
ARDS13–16 or obesity,17 we speculated that this might 
result, in part, from more efficient matching by HPV 
of perfusion to ventilation in the prone position. This 
notion was explored using a dog split lung model in 
which the left lung was subjected to hypoxia (3% 
oxygen), and the right lung ventilated with 100% 
oxygen for the entire experiment. In this study, we 
found more hypoxic diversion of blood flow, assessed 
using the multiple inert gas elimination. technique 
(MIGET), in the supine compared with the prone 
position. 

Materials and methods 

ANIMAL PREPARATION AND PHYSIOLOGICAL 

MEASUREMENTS 

The study was approved by the University of 
Washington Animal Care Committee. We used nine 
dogs (mean weight 20.8 (SD 1.8) kg). They were fasted 
overnight but had free access to water. A peripheral 
vein was cannulated and anaesthesia was induced 
with pentobarbital 30 mg kg�1 i.v. and maintained with 
intermittent i.v. doses as required (30–90 mg every 
20–30 min). The trachea was intubated orally and the 
lungs ventilated with a tidal volume of 15 ml kg�1. A 
femoral artery catheter, pulmonary artery catheter via 
the external jugular vein, and a femoral venous 
catheter were inserted via peripheral cutdowns. 
Systemic arterial, pulmonary arterial, pulmonary arte- 
rial occlusion and airway pressures were measured 
continuously and recorded on a Western Graphic 
Mach 12 data-management system DMS 1000 with 
Validyne amplifiers (Irvine, CA, USA). Vascular pres- 
sures were zeroed to the mid-chest level. Body temper- 
ature was maintained at 38�1�C using heating lamps 
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and pads. Thermodilution cardiac outputs (QT) were 
obtained in triplicate (Edward’s SAT-2 Cardiac 
Output Computer, Santa Ana, CA, USA). 

A Kottmeier double-lumen endobronchial tube 
(Les Wilkins Co., Seattle, WA, USA) was inserted via 
a subcricoid tracheostomy. Complete lung isolation 
was verified by the absence of air bubbles escaping 
from one limb of the endobronchial tube when the 
other was hyperinflated, and the absence of 
cross-contamination when the lungs were ventilated 
separately with helium. Both lungs were ventilated 
synchronously with a Harvard dual-piston ventilator 
(South Natick, MA, USA) with separate gas breath- 
ing systems. The inspired gas mixture was adjusted 
using a Cameron GF-5 Gas Flowmeter (Port 
Aransas, TX, USA). Inspired, mixed-expired and 
end-tidal 

2COP  and PO2 were measured with a Mass 
spectrometer (Perkin Elmer, Medical Gas Analyzer 
Instrumentation Laboratories 1302) and corrected 
for body temperature. Right and left tidal volumes 
were set at 9 and 6 ml kg�1, respectively, and were 
adjusted to yield equal airway pressures of 10–15 cm 
H2O. Ventilatory frequency was adjusted to yield 
normocapnia. The lungs were hyperinflated every 
30 min to prevent microatelectasis. 

MULTIPLE INERT GAS ELIMINATION TECHNIQUE 

The multiple inert gas elimination technique 
(MIGET) was used to assess pulmonary gas 
exchange18 19 and the fraction of blood flow to the left 
and right lungs.20 A solution of six inert gases (sul- 
phur hexafluoride, ethane, cyclopropane, halothane, 
diethyl ether and acetone) dissolved in 5% dextrose 
was infused into the femoral vein catheter at a rate of 
3 ml min�1 for 1 h before starting any measurements. 
Inert gas partial pressures were measured in dupli- 
cate blood samples collected simultaneously from 
the pulmonary and femoral arteries and in mixed 
expired gas. Exhaled gas specimens were maintained 
at �40�C before analysis to avoid condensation and 
loss of high solubility gases. 

Concentration of inert gases were measured using 
a gas chromatograph (Varian 3300, Walnut Creek, 
CA, USA) equipped with a flame ionization detector 
and an electron capture detector. The gas extraction 
method of Wagner, Naumann and Laravuso21 was 
used to determine the concentration of inert gases in 
the blood samples. 

STUDY PROCEDURE 

Before beginning the study, the animals were 
“primed” with 3–4 hypoxic challenges. After demon- 
stration of a stable HPV response by consistent 
increases in mean pulmonary artery pressure and 
stable arterial blood-gas tensions with left lung 
hypoxia, the study began. The right lung was venti- 
lated with an 

2OIF  of 1.0 throughout the study. The 
left lung was ventilated with an 

2OIF  of 1.0 (hyper- 
oxia) or 0.03 (hypoxia) in random order. Inspired 
carbon dioxide (

2COIF �0.03) was added to the left 
lung inspired gas mixture during hypoxia, and to 
both lungs (

2COIF �0.01–0.02) during hyperoxia to 
prevent cyclical variations in the HPV response 
caused by alveolar hypocapnia. Animals were studied 
in the supine and prone positions in random order. 

Blood-gas tensions, collection of mixed expired gas 
samples and haemodynamic measurements were 
obtained after a stabilization period of 20 min in each 
phase. 

CALCULATIONS AND STATISTICAL ANALYSIS 

Pulmonary blood flow to each lung was calculated by 
the Pick principle for the inert gas with the lowest 
solubility in blood, sulphur hexafluoride (SF6): 

 SF6R R R SF6 SF6SF6( x (exp) )/ ( (v) ) (a) )P P Pλ=Q V  �  

 L LL SF6 SF6 SF6 SF6( x (exp) )/ ( (v) ) (a) )P P Pλ=Q V  �  

where QR and QL�right and left lung blood flow; VR 
and VL � right and left lung minute ventilation; 
PR(exp)SF6 and PL(exp)SF6�partial pressure of SF6 in 
mixed expired gas from the right and left lung; 
�SF6�Ostwald blood-gas partition coefficient of SF6; 
P(v)SF6 and P(a)SF6�Partial pressure of SF6 in mixed 
venous and arterial blood. Blood flow to each 
lung was expressed as a fraction of total pulmonary 
blood flow. Left lung blood flow diversion during 
hypoxia was calculated as (Qhyperoxia–Qhyperoxia)/Qhyperoxia 
and expressed as percent.22 

Concentrations of the six inert gases in mixed 
expired gas, pooled from both lungs, were used to 
assess changes in the ventilation/perfusion (VA/Q) 
distributions predicted by the 50-compartment 
model of Wagner, Saltzman and West, and Evans and 
Wagner.18 19 This model considers the lung to consist 
of 50 homogeneous compartments arranged in par- 
allel, each with VA/Q values evenly spaced on a loga- 
rithmic scale. Inert gas shunt, deadspace, mean VA/Q 
ratios of VA and Q distributions, percentage of Q to 
low VA/Q units (VA/Q ratio 0.005–0.1), and percent- 
age of VA to high VA/Q units (VA/Q ratio 10–100) 
were calculated from the 50-compartment model. 

Data were analysed by two-factor (
2OIF  and posi- 

tion) within-subjects analysis of variance. Significant 
differences determined from analysis of variance 
were analysed by calculating the least significant dif- 
ference. Data are expressed as mean (SD). P�0.05 
was considered significant. 

Results 
Right and left airway pressures, and left and right 
end-tidal carbon dioxide concentrations were not dif- 
ferent between the conditions; the latter were within 
normal limits in both lungs (4.5–5.7%). There were 
no significant changes in 

2COaP and 
2Oa ;P  

2OvP did not 
change with position but decreased during hypoxia 
(table 1). 

Mean pulmonary artery pressure increased signifi- 
cantly with hypoxia (P�0.01) but did not differ 
between positions when analysed by two-factor 
ANOVA. Pulmonary artery occlusion pressure and 
systemic artery pressure were unaffected by hypoxia 
but systemic artery pressure changed significantly 
with position. Cardiac output did not differ signifi- 
cantly between the conditions (table 1). 

The proportion of total pulmonary perfusion flow- 
ing to the left lung during hyperoxia was not signifi- 
cantly different between the prone and supine 
positions (0.40 (0.05) and 0.39 (0.05), respectively). 
Left lung blood flow diversion by hypoxia was 57.0 
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(12.1) % in the prone and 70.7 (11.2) % in the 
supine position (P�0.02, fig. 1). Inert gas shunt and 
deadspace did not change between conditions (table 
2), Perfusion to regions with low VA/Q ratios was 
larger in the supine than in the prone position 
(P�0.05), but there was no significant influence of 

2OI .F  Ventilation to regions with high VA/Q ratios dur- 
ing hypoxia was higher in the supine than in the 
prone position (P�0.05, table 2). 

Discussion 
The important finding of this study was that redistri- 
bution of pulmonary blood flow by hypoxic vasocon- 
striction was more effective in the supine than in the 
prone position. Before considering the implications 
of these results, we discuss some of the limitations of 
the methods used in our experiment. 

METHODOLOGICAL ISSUES 

We used dogs to examine the hypothesis that the 
HPV response was position-dependent and might 
contribute to improved gas exchange in patients 
nursed in the prone position. Dogs are large enough 
to allow for invasive instrumentation and their HPV 
response has been characterized in great detail.22–24 A 
major drawback is that dogs depend more on collat- 
eral ventilation than HPV in maintaining ventila- 
tion-perfusion matching.25 However, it is likely that 
the basic mechanisms that determine flow diversion 
by HPV are similar in humans and dogs, as suggested 
by work showing marked similarity across different 
species.23 24 26 27 

We measured blood flow to each lung by applying 
the Fick principle to the differential excretion of SF6. 
This technique was found previously to provide an 
accurate non-invasive measure of pulmonary blood 
flow compared with invasive electromagnetometry.20 28 
Retention and excretion data from all six inert gases 
were used to describe the gas exchange function of 
the lungs according to the model of Wagner, 
Saltzman and West, and Evans and Wagner.18 19 

POSITION RELATED EFFECTS ON HAEMODYNAMIC STATE 

Higher mean pressures in the pulmonary and 
femoral artery were recorded in the prone compared 
with the supine position. Similar results, with higher 

Table 1 Blood-gas tensions and haemodynamics (mean (SD)). ***P�0.001 vs hyperoxia; †P�0.05, 
††P�0.01 vs prone posture with same O2

IF  

Hyperoxia Hypoxia  

Prone Supine  Prone Supine 

Arterial oxygen tension 
 (mm Hg) 

 
604 (21) 

 
586 (30) 

 
221 (97)*** 

 
259 (94)*** 

Arterial carbon dioxide tension 
 (mm Hg) 

 
38 (2) 

 
39 (6) 

 
39 (4) 

 
42 (5) 

Mixed venous oxygen tension 
 (mm Hg) 

 
78 (14) 

 
72 (7) 

 
61 (9)*** 

 
60 (7)*** 

Mean pulmonary artery pressure 
 (mm Hg) 

 
18 (4) 

 
16 (4) 

 
23 (5)*** 

 
20 (4)*** 

Pulmonary artery occlusion pressure 
 (mm Hg) 

 
7 (1) 

 
12 (5)† 

 
8 (4) 

 
11 (3) 

Mean systemic artery pressure 
 (mm Hg) 

 
147 (13) 

 
125 (13)†† 

 
149 (11) 

 
120 (11)†† 

Thermodilution cardiac output 
 (litre min�1) 

 
4.6 (1.6) 

 
3.7 (1.0) 

 
4.4 (1.5) 

 
3.8 (0.8) 

Table 2 Gas exchange variables (mean (SD)). VA/Q�ventilation perfusion ratio. **P�0.01, ***P�0.001 vs hyperoxia; †P�0.05 vs prone 
posture with the same O2

IF  

Hyperoxia Hypoxia  

Prone Supine  Prone Supine 

Mean VA/Q of the perfusion distribution 0.88 (0.19) 0.75 (0.16) 0.67 (0.19)** 0.61 (0.18)** 
Mean VA/Q of the ventilation distribution 0.82 (0.35) 0.96 (0.34) 1.36 (0.33)*** 1.37 (0.29)*** 
Shunt (%) 0.6 (0.9) 1.7 (1.3) 1.2 (1.5) 1.6 (1.9) 
Perfusion to VA/Q�0.005–0.1 (%) 0.7 (1.6) 4.1 (3.4)† 1.0 (1.8) 5.5 (3.8)† 
Ventilation to VA/Q�10–100 (%) 2.3 (3.1) 3.1 (3.4) 7.5 (3.9)*** 13.8 (7.8)***† 
Deadspace (%) 39.0 (5.0) 40.7 (6.5) 41.2 (2.4) 38.9 (6.3) 

 

Figure 1 Individual effects of posture on blood flow diversion by 
left lung hypoxia (3% oxygen). Mean values are connected by a 
thick line. 
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systemic arterial pressure in the prone position, have 
been reported in numerous investigations, including 
studies in human subjects.13–15 29–32 The position- 
associated changes in vascular pressures could be 
explained in part by failure of the mid-chest level to 
reflect the true zero reference point in both positions. 
However, this is unlikely to be the sole mechanism as 
the use of a catheter in the right atrium as the true 
zero reference point still produced higher systemic 
pressure readings in the prone compared with the 
supine position in anaesthetized dogs.30 We are not 
aware of any data that could shed light on the mecha- 
nisms responsible for these effects of position on 
haemodynamic state. It is possible that the heart was 
restricted by the lungs and its own weight in the 
supine position. It is equally likely that the prone 
position was associated with increased stimulation of 
the larynx and the airways by the tracheal tube, and 
hence increased sympathetic tone. 

EFFECTS OF POSTURE ON BLOOD FLOW DIVERSION AND 

GAS EXCHANGE 

The hypoxic left lung received a smaller fraction of 
cardiac output in the supine than in the prone posi- 
tion. Flow diversion by hypoxic vasoconstriction is 
an adaptive mechanism aimed at preserving gas 
exchange by directing perfusion away from lung seg- 
ments with hypoxic gas. The efficiency of this 
response is influenced by the relative sizes of the 
hypoxic and hyperoxic parts of the lung.22 The inten- 
sity of the response is a function of both alveolar and 
mixed venous oxygen tensions,24 26 and it is also influ- 
enced by pH and carbon dioxide tension.33 These fac- 
tors were balanced between the prone and supine 
positions in our experiment, and the fraction of car- 
diac output to the left lung was similar in both posi- 
tions, suggesting that the difference in flow diversion 
was caused by change in position. Flow diversion in 
the supine position was similar to previously pub- 
lished work,22 28 although direct comparison with 
other studies is of limited interest because of the 
numerous factors that influence the response. 

The factors responsible for reduced flow diversion 
in the prone compared with the supine position were 
not addressed specifically in our study. One mecha- 
nism, stated previously, is changes in haemodynamic 
state, particularly the increase in cardiac output that 
we and others have observed in the prone position. 
The results of Domino, Hlastala and Cheney are 
especially relevant in this respect.28 In that study, car- 
diac output was increased by 85% using an external 
arteriovenous fistula during left lung hypoxia 
(

2OIF �0.04) in supine dogs. The increase in blood 
flow was accompanied by a decrease from 63% to 
48% in left lung hypoxic blood flow diversion. The 
results from that study suggest that the minute posi- 
tion-related changes in haemodynamic state that we 
observed cannot alone account for the posture- 
dependent alterations in flow diversion. Although 
speculative, it is possible that the asymmetry of the 
pulmonary circulation that normally balances the 
influence of gravity in the prone position11 could 
account for the larger flow diversion in the supine 
position. The increased conductance to perfusion in 
dorsal lung regions9 may work in concert with gravity 
by facilitating flow diversion in the supine position. 

Data from retention and excretion of inert gases 
showed a significant increase in the fraction of venti- 
lation to regions with high VA/Q ratios (10–100) dur- 
ing hypoxia, which is consistent with diversion of 
blood flow away from hypoxic lung regions. The 
increase in ventilation to these high VA/Q regions was 
significantly greater in the supine than in the prone 
position. This would normally be associated with less 
efficient gas exchange. However, it occurred under 
the conditions of the present experiment with split 
lungs, indicative of more effective separation of per- 
fusion from ventilation in the supine than in the 
prone position. This observation is in agreement with 
perfusion data showing more efficient flow diversion 
in the supine position. 

RELATIONSHIP TO THE CLINICAL SETTING 

The split lung model can provide some valuable 
insights into the mechanisms that influence flow diver- 
sion by HPV, but cannot serve as a complete model of 
the complicated effects of HPV in diffuse lung pathol- 
ogy (i.e. ARDS). However, if the structure of the frac- 
tally branching pulmonary vasculature11 34 plays a role 
in the observed effect, it is plausible that the same 
position-dependent influence exists on a smaller scale 
within each lung, with similar effects on the efficiency 
of regional gas exchange. This could have implications 
for patient care, among which posture-dependent 
effects of drugs that influence HPV can be expected. 
Less efficient flow diversion in the prone position may 
offset the beneficial influence of prone positioning on 
distribution of ventilation in ARDS, and thus explain 
why improvement in arterial oxygenation in the prone 
position is variable, and sometimes non-existent.16 
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