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Glutamate: a role in normal brain function, anaesthesia, analgesia 
and CNS injury 

M. J. HUDSPITH 

Glutamate is the major excitatory amino acid (EAA) 
neurotransmitter in the central nervous system 
(CNS).78 EAA neurones and synapses are distri- 
buted widely throughout the CNS,36 231 but they are 
concentrated particularly in the hippocampus,91 the 
outer layers of the cerebral cortex91 and the sub- 
stantia gelatinosa of the spinal cord.194 Within these 
regions EAA play key roles in physiological processes 
including learning and memory (and hence aware- 
ness under anaesthesia), central pain transduction 
mechanisms and pathological processes such as 
excitotoxic neuronal injury which follows CNS 
trauma or ischaemia. Thus an understanding of the 
role of EAA in the CNS is relevant to normal higher 
brain function and to anaesthesia, analgesia and 
intensive care. 

A broad spectrum of pharmacological agents 
which alter EAA-mediated neurotransmission are 
already available and many more are under develop- 
ment. These include: (i) drugs that specifically target 
the release of EAA (e.g. the novel antiepileptic 
drugs felbamate and lamotrigine), (ii) drugs that 
modify the interactions of EAA with specific recep- 
tors (e.g ketamine) and (iii) volatile and i.v. anaes- 
thetic agents which may have a common mechanism 
of action that, at least in part, involves EAA- 
mediated neurotransmission. To understand the 
potential applications of these agents it is necessary 
to consider first how EAA act at the level of the 
synapse and the individual neurone. To do so 
involves a brief outline of EAA receptor subtypes 
and how their activation affects the postsynaptic 
neurone. It may then be possible to explain how 
EAA and their receptors are involved in cognition, 
anaesthesia, analgesia and neurointensive care and 
therefore to provide a framework to assess the 
possible clinical applications of drugs which modify 
EAA-mediated neurotransmission. 

Excitatory amino acid neurotransmission 
A diagrammatic representation of an EAA synapse 
comprising a presynaptic nerve terminal and a post- 
synaptic neurone expressing multiple EAA receptor 
  
(Br. J. Anaesth. 1997; 78: 731�747). 
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subtypes is shown in figure 1 and described first in 
terms of presynaptic events and then activation of 
postsynaptic receptors. 

PRESYNAPTIC EVENTS 

Glutamate, synthesized by the deamination of 
glutamine or via the tricarboxylic acid cycle, is 
released into the synaptic cleft in response to 
depolarization of the presynaptic nerve terminal. 
The release of glutamate from presynaptic terminals 
(and that of other neurotransmitters), is a Ca2�- 
dependent process regulated by multiple types of 
Ca2� channel. N-type and P-type Ca2� channels 
are probably the most important determinants of 
exocytotic neurotransmitter release from presynaptic 
nerve terminals throughout the CNS55 although 
other channel types (such as Q and R) may also be 
involved. Importantly, different Ca2� channel types 
may be involved in the exocytotic release of neuro- 
transmitter from different neurones within the CNS 
and from different sites in individual neurones.55 
After release of glutamate, binding to specific 
receptor types described in the following section 
determines the postsynaptic response. 

In common with many other central neuro- 
transmitter systems,88 the actions of glutamate 
within the synaptic cleft are terminated by high 
affinity sodium-dependent uptake. Glutamate trans- 
porters are localized in both pre- and postsynaptic 
neuronal elements together with glial cells.182 Three, 
or possibly four, glutamate transporters have been 
characterized64 96 164 201 (for a recent review see 
Malandro and Kilberg128), each of which are trans- 
membrane proteins of approximately 60–70 kDa size 
with Km values for glutamate in the low micromolar 
range. 

EXCITATORY AMINO ACID RECEPTORS 

Two main subgroups of EAA receptors have been 
identified: ionotropic and metabotropic receptors.191 223 
Ionotropic glutamate receptors (iGlu-receptors) 
are so named because such receptors are ligand- 
operated ion channels (LOC) and a change in 
membrane permeability to specific cations occurs 
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within a few milliseconds of agonist binding (see 
below). The iGlu-receptor family can be classified 
pharmacologically according to activation by specific 
agonists into three subtypes: AMPA receptors (�- 
amino-3-hydroxy-5-methyl-4-isoxazolepropionate), 
KA receptors (kainate) and NMDA receptors 
(N-methyl-D-aspartate). 

The family of metabotropic glutamate receptors 
(mGlu-receptors; for clarity, mGluR in fig. 1) are 
receptors linked to G-proteins that modulate 
intracellular second messengers such as inositol 
phosphates and cyclic nucleotides. Their classifi- 
cation is complicated by the lack of ligands 
showing selectivity for individual mGlu-receptor 
subtypes. However eight mGlu-receptor subtypes 
have been identified by molecular biological 
techniques (for reviews see Miller,139 Nicoletti and 
colleagues,150 and Pin and Duvoisin163); all are 
members of the 7-transmembrane receptor super- 
family and can be further classified according to 
sequence homology and signal transduction path- 
ways into three groups (see table 1). Whereas 
activation of iGlu-receptors results in a response 
(i.e. membrane depolarization) within a few 
milliseconds of agonist binding, the G-protein 
coupled mGlu-receptors evoke changes in neuronal 

excitation on a time scale of hundreds of milliseconds 
to seconds. 

In contrast to the 7-transmembrane mGlu recep- 
tor, ionotropic EAA receptors are composed of 
multiple subunits. At least 16 genes encoding iGlu 
receptor subunits have been characterized (see 
table 2: for reviews see Seeburg193 and Sucher and 
colleagues203), and some of these genes (notably 
those encoding the NMDAR156 and GluR1- 
GluR4197 subunits) undergo RNA editing producing 
multiple splice variants. Accordingly, multiple 
variants of glutamate receptor subtypes are expressed 
throughout the CNS and can be identified using 
molecular biological techniques.83 206 232 However, 
for the purpose of this review the pharmacological 
classification listed above will be used. The roles of 
the iGlu-receptor family in systems of relevance to 
anaesthesia and analgesia are currently better charac- 
terized than those of the mGlu-receptor family; much 
of the following therefore concentrates on iGlu- 
receptor mediated mechanisms of neurotransmission. 

Ionotropic receptors 

When activated, iGlu-receptors undergo a confor- 
mational change that results in the opening of their 

 

Figure 1 Schematic representation of an excitatory amino acid (EAA) synapse within the CNS. Glutamate is 
released from the presynaptic nerve terminal in response to depolarization-dependent Ca2� entry through “N-” or 
“P-” type voltage-operated Ca2� channels. Glutamate within the synaptic cleft can bind to ionotropic and 
metabotropic glutamate receptors (mGluR) on the postsynaptic neurone: individual neurones may express multiple 
glutamate receptor subtypes. Receptor activation evokes a cellular response via increases in intracellular Ca2� and 
activation of protein kinases. GLU�glutamate; NMDA�N-methyl-D-aspartate; KA�kainate; GLN�glutamine; 
AMPA��-amino-3-hydroxy-5-methyl-4-isoxazolepropionate; PIP�phosphatidyl-inositol-4,5-bisphosphate; 
PLC�phospholipase C; IP3�inositol-l,4,5-trisphosphate; IP3R�IP3 receptor; DAG�diacylglycerol; 
VOC�voltage-operated ion channel; (a)�depolarization and action potential generation. 

Table 1 Classification of metabotropic glutamate receptors mGlu1–mGlu8 (modified and redrawn from IUPHAR87 

and Nicoletti and colleagues150). 4CPG�S-4-carboxyphenylglycine; L-AP4�L-amino-4-phosphonobutanoate; 2R,4R- 
APDC�2R,4R-aminopyrrolidine-2,4-dicarboxylate; cAMP�cyclic 3’,5’-adenosine-monophosphate; DCG-IV� 
(2S,1’R,2’R,3’R))-2-(2’,3’-dicarboxycyclopropyl)glycine; DHPG�3,5,dihydrophenylglycine; MAP4�methyl-L-AP4; 
MCCG�2S,1’S,2’S-2-methyl-2-(2’-carboxycyclopropyl)glycine; MPPG�(RS)-α-methyl-4-phosphonophenylglycine; 
IP3�Inositol 1,4,5 trisphosphate; IK�Voltage-operated K+-channel; ICa�Voltage-operated Ca2+-channel 

mGlu receptor 
subtypes 

  
Agonists 

 
Antagonists 

Transduction pathway 
(G-protein effector) 

Group 1 mGlu1 DHPG 4CPG ↑IP3 
 mGlu5   ↓IK 
Group 2 mGlu2 DCG-IV MCCG ↓cAMP 
 mGlu3 2R,4R-APDC  ↓Ica(L,N,P channel) 
    ↑IK 
Group 3 mGlu4 L-AP4 MAP4 ↓cAMP 
 mGlu6–8  MPPG ↓Ica (N,P channel) 
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respective ligand-operated channel (LOC). The 
gating properties and ion flux through iGlu-receptor 
LOC may be modified by the binding of other 
ligands to modulatory binding sites separate from 
the glutamate binding site. Activation of iGlu- 
receptors causes transmembrane flux of cations 
resulting in depolarization of the postsynaptic 
membrane. Subsequent postsynaptic events may be 
a direct consequence of cation entry and/or opening 
of voltage-operated ion channels and further cation 
entry (see fig. 1). 

AMPA receptors. AMPA receptor channels consist 
of homomeric or heteromeric assemblies of GluR1- 
GluR4 subunits193 (see table 2); the resultant 
receptor channel is primarily a Na� channel with 
rapid kinetics of activation and deactivation. Such a 
kinetic profile renders AMPA receptors ideal for 
mediation of fast excitatory neurotransmission 
throughout the CNS, and their generally very low 
Ca2� permeability ensures that this glutamate- 
activated excitation does not trigger longer term 
biochemical processes evoked by an increase in 
intracellular Ca2� concentrations. 

All AMPA receptors show onset, offset and desen- 
sitization time courses in the order of a few milli- 
seconds, although current:voltage relationships and 
cation permeability are specifically determined by 
subunit composition. For example, the normally 
cation impermeable AMPA receptor channel may 
permit Ca2� entry if the GluR2 is absent,81 although 
whether AMPA receptor-mediated Ca2� entry has 
physiological relevance is unclear. A second binding 
site for 2,3 benzodiazepines attenuates the response 
of the channel to prolonged agonist stimulation and 
2,3 benzodiazepines act as non-competitive AMPA 
antagonists.51 

Kainate receptors. The neurotoxin, kainate (KA), 
binds to a specific high affinity KA receptor 
(identified in sensory ganglia) and activates a rapidly 
desensitizing Na� channel82 with similar kinetics to 
the AMPA receptor. High affinity kainate receptors 
can be generated in vitro from multimeric assemblies 
of GluR5–7 and KA1 or KA2 subunits193 (table 2) 
but again, precise kinetic variables of activation and 
inactivation are determined by subunit composition. 

Kainate also binds to the AMPA receptor with a 
lower affinity resulting in persistent, non-desensi- 
tizing activation of the AMPA receptor channel 
and this effect may overshadow transient high 
affinity KA receptor responses in central 
neurones.193 Currently the distinction between 
AMPA and kainate receptors is somewhat blurred 
dependent on classification according to gating 
or ligand binding, however, activation of either 
receptor subtype by the endogenous ligand 
glutamate results in rapid, although transient, 
depolarization of the postsynaptic membrane. 

NMDA receptors. The NMDA receptor channel 
preferentially permits Ca2� entry119 and the kinetics 
of this channel are much slower than those of the two 
preceding types of iGlu-receptor with channel 
opening persisting for several tens or hundreds of 
milliseconds. NMDA receptors can be reconstituted 
in vitro as heteromeric combinations of the NR1 sub- 
unit and one of four NR2 subunits (NR2A-D)193 203 
(table 2). The NR1 subunit common to all NMDA 
receptors exists in at least eight splice variants,232 
and this together with the four NR2 subunits provide 
the potential for a vast array of NMDA receptor sub- 
types to exist within the CNS. As with each of the 
ionotropic glutamate receptor classes, subunit 
composition determines the (complex) gating 
properties of the channel, however caution has been 
recommended in comparing the pharmacological 
properties of recombinant NMDA receptors with 
those of native neurones203 and no attempt is made 
in the following to differentiate between NMDA 
receptor subtypes. 

The gating properties of the NMDA receptor 
channel are complex and subject to modulation at 
several different sites (fig. 2). In addition to its bind- 
ing site for EAA such as NMDA or glutamate, the 
receptor has a second binding site for glycine which 
facilitates the actions of glutamate or NMDA.93 
However, in the resting (i.e. non-depolarized) state, 
the NMDA receptor channel is blocked by Mg2� 
ions at a site deep within the channel itself133 152 and 
binding of NMDA or glutamate to the agonist 
binding site, even in the presence of glycine, does 
not result in Ca2� entry through the postsynaptic 

Table 2 Classification of ionotropic glutamate receptors (modified and redrawn from IUPHAR86). D-AP5�D- 
amino-5-phosphonopentanoate; AMPA=D,L-�-amino-3-hydroxy-5-methyl-4-isoxalone propionic acid; 
CGS19755�4-phosphonomethyl-2-piperidine carboxylic acid; KA�kainate; MNQX�5,7-dinitroquinoline-2,3- 
dione; NBQX�6-nitro-7-sulphamobenzyl(f)quinoxaline-2,3-dione; NMDA�N-methyl-D-aspartate; NS102�6- 
cyano-7-nitro-2,3-quinoxalinedione 

iGlu receptor 
subtype 

Subunit 
genes 

  
Agonist 

 
Antagonists 

Transduction 
pathways 

AMPA GluR1  AMPA NBQX ↑[Na+]i 
 GluR2    (↑[Ca2+]i?) 
 GluR3     
 GluR4     
KA GluR5  Kainate NS102 ↑[Na+]i 
 GluR6     
 GluR7     
 KA1     
 KA2     
NMDA NR1 Competitive NMDA D-AP5 ↑[Ca2+]i 
 NR2A site  CGS19755  
 NR2B Modulatory Glycine 5,7-dichlorokynurenate  
 NR2C site  MNQX  
 NR2D     
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membrane. Depolarization of the membrane 
removes the Mg2�-mediated channel blockade and 
Ca2� flux through the channel can then occur. 
Calcium entry through the NMDA receptor channel 
can also be modulated by micromolar concentra- 
tions of Zn2� ions132 220 which inhibit channel 
opening time in a voltage-independent manner.134 
The NMDA receptor channel is subject to further 
modulation by agents such as dizolcipine (MK-801) 

that bind to a site (phencyclidine binding site) within 
the channel itself92; binding to this site is enhanced 
significantly when the channel is activated and such 
agents (which include the dissociative anaesthetics 
ketamine and phencyclidine) are known as open- 
channel blockers. Outside the channel are further 
modulatory sites: these include a polyamine binding 
site175 and a redox site110 where sulphydryl groups of 
the subunits may interact with nitric oxide (NO) 
derivatives to modify channel function. 

The slow kinetics of dissociation of glutamate 
from its agonist site (time constants of decay in the 
order of tens or hundreds of milliseconds), and the 
necessity of coincident membrane depolarization to 
permit channel opening enable the NMDA receptor 
to function as a molecular detection device for near 
coincident pre- and postsynaptic depolarization. 
The resultant increase in intracellular Ca2� may 
trigger sequences of molecular events that lead to 
longer term changes in neuronal function. 

Excitatory amino acids and anaesthesia 
General anaesthetic agents have a broad spectrum of 
actions; they modify both inhibitory and excitatory 
neurotransmission at presynaptic and postsynaptic 
loci within the CNS67 108 166 176; nevertheless their 
precise mode of action remains uncertain and 
undoubtedly they interact with multiple neurotrans- 
mitter systems by a variety of mechanisms.115 

 

Figure 2 Schematic representation of the NMDA receptor 
complex. In the non-depolarized neuronal membrane, binding of 
glutamate and glycine does not result in Ca2� entry while the ion 
channel remains blocked by Mg2�. Depolarization removes the 
Mg2� block enabling cation entry. Cation flux is inhibited by 
agents binding to the phencyclidine site within the ion channel 
and modulated by agents interacting with the polyamine and 
redox sites. i�Intracellular; o�extracellular; GLU�glutamate; 
GLY�glycine; PCP�phencyclidine; NO�redox site. 

Table 3 Anaesthetic effects on EAA neurotransmission. L-GLU, NMDA, AMPA/KA indicates effect on neurone 
(either depolarisation or Ca2+ entry) in response to specific agonist. ↓�inhibition, ↔↓�inhibition at high 
concentration, ↑�potentiation, ↔�no effect. B�whole brain, C�cerebral cortex, H�hippocampus, Th�thalamus, 
Sp�spinal cord, O�oocytes expressing human brain mRNA 

Anaesthetic EAA release Ref. L-GLU Ref. NMDA Ref. AMPA/KA Ref. 

Isoflurane ↓ C [138] ↓ C [168] ↓ C [24] ↓ C [24] 
  [190]    [168]   
 ↓ H [13]   ↔↓ C [131] ↓ H [169] 
  [109]      [218] 
  [124]       
 ↓ Sp [187]   ↓ H [169]   
      [229]   
 ↔ H [161]   ↓ Sp [187]   
Enflurane ↓ C [138] —  ↓ C [7] ↓ O [112] 
  [190]    [131]   
 ↑ B [79]   ↓ O [112]   
Halothane ↓ C [178] ↓ C [168] ↓ C [7] ↓ C [24] 
  [190]  [178]  [131]   
      [168]   
 ↔↑ C [5] ↔ H [162] ↔ C [24] ↓ H [148] 
        [169] 
 ↓ H [124]   ↓ H [148] ↔ H [162] 
  [162]    [169]   
  [179]       
 ↔ B [79]   ↔ H [162]   
Methoxyflurane ↓ C [177] ↓ C [177] ↓ C [131] —  
    [178]     
 ↓ H [179]       
Diethylether ↓ C [177] ↓ C [177] ↓ C [24] ↓ C [24] 
    [178]  [131]   
 ↓ H [179]   ↓ H [218] ↔ H [218] 
 ↔ B [79]       
Trichloroethylene ↓ C [177] ↓ C [178] —  —  
Propofol —  ↓ B [15] ↓ H [14] ↔ H [14] 
Barbiturate ↓ C [33] ↓ C [178] ↓ H [188] ↓ C [24] 
  [140]       
 ↔ C [190] ↓ H [188] ↔ H [218] ↓ H [188] 
        [218] 
 ↓ Th [100]       
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Attempts have been made to produce “unitary 
theories of anaesthesia” and one proposed mecha- 
nism, common to general anaesthetic action is that 
of potentiation of the inhibitory neurotransmitter 
�-amino-butyric acid (GABA) at the GABAA 
receptor Cl� channel.67 However, there is a growing 
body of evidence that general anaesthetic agents also 
modify EAA-mediated excitatory neurotransmission 
in the CNS, and this has important implications with 
regard to the means by which anaesthetics suppress 
the responses to, and awareness of, noxious stimuli. 
The evidence for anaesthetic effects on EAA is 
reviewed below (data summarized in table 3). 

PRESYNAPTIC EFFECTS OF GENERAL ANAESTHETICS 

As stated above, the release of EAA neurotransmit- 
ters is dependent on Ca2� entry into nerve terminals 
through N-type, P-type and possibly other voltage- 
operated channels in the presynaptic membrane.55 
Voltage-operated Ca2� channels are themselves a 
target of general anaesthetic action and the evidence 
for their inhibition by volatile and i.v. anaesthetics in 
a variety of neuronal populations has been reviewed 
recently.102 Two studies that specifically examined 
anaesthetic effects on Ca2� channel subtypes in 
hippocampal neurones have shown that halothane, 
enflurane and isoflurane markedly inhibit multiple 
Ca2� channel types at clinically relevant concentra- 
tions.106 202 It should be noted that Ca2� channel 
sensitivity to general anaesthetics may vary in 
different neuronal populations as P-type Ca2� 
channels were unaffected by isoflurane in cerebellar 
neurones76 but may be sensitive to this agent in 
hippocampal neurones.202 

Inhibition of Ca2� channel function would be 
expected to reduce the release of EAA and several 
early studies suggested that both volatile anaes- 
thetics177 178 179 and barbiturates33 100 140 could 
decrease the depolarization-evoked release of EAA 
neurotransmitters from central neurones. Recent 
studies have confirmed this effect with the demon- 
stration that both isoflurane109 124 and halothane124 

162 at clinically relevant concentrations (0.5–2 MAC) 
markedly inhibit release of glutamate from hip- 
pocampal neurones in a dose-dependent manner. 
Furthermore, data demonstrating inhibition by 
halothane, enflurane and isoflurane of glutamate 
release138 190 associated with reduced Ca2� entry138 in 
cerebral cortical nerve terminals strongly suggest 
that presynaptic inhibition of glutamate release may 
be a common property of volatile anaesthetic agents. 

The specific sodium-dependent glutamate trans- 
porters that limit the synaptic duration of EAA by 
uptake into both neurones and astroglia have been 
shown not to be sensitive to clinically relevant con- 
centrations of either volatile or i.v. anaesthetics.149 

POSTSYNAPTIC EFFECTS OF GENERAL 
ANAESTHETICS 

When postsynaptic effects are considered, it is clear 
that volatile and i.v. anaesthetic agents have in 
general, inhibitory effects on the excitatory responses 
of CNS neurones to exogenously applied EAA 

agonists (see table 1). Inhibition of each of the iGlu- 
receptor subtypes has been reported by a number of 
investigators,14 148 169 188 218 229 however, subtype 
specific effects on iGlu-receptor function have not 
been consistent. This may reflect the different 
methodologies used in these studies; most notably 
this applies to halothane which under different 
conditions may either inhibit148 169 or have no 
effect162 on hippocampal NMDA receptor and 
AMPA receptor function. 

The data in table 1 demonstrate that general 
anaesthetic agents apparently share a common 
property of inhibiting EAA-mediated neurotrans- 
mission at several sites within the mammalian CNS. 
However, the predominant site and nature of the 
inhibition differs according to the region of the CNS 
and the anaesthetic agent under investigation. 
Presynaptically, this may reflect the variations in 
Ca2� channel populations responsible for neuro- 
transmitter release55 and their different sensitivities 
to anaesthetics in different areas of the CNS.76 202 
When postsynaptic effects are considered, the recent 
report that anaesthetic agents can have subunit 
selective actions at glutamate receptors50 indicates 
that variations in iGlu-receptor subunit composition 
throughout the CNS83 may determine the response 
to anaesthetics in different brain regions. 

IS INHIBITION OF EAA NEUROTRANSMISSION 
CAUSAL TO ANAESTHESIA? 

If inhibition of EAA-mediated neurotransmission 
causes the anaesthetic state, then specific pharmaco- 
logical manipulation of EAA neurotransmission 
should affect anaesthesia induced by other volatile or 
i.v. agents. This is clearly seen with glutamate antag- 
onists which markedly reduce the MAC for other 
anaesthetic agents in vivo. This has been demon- 
strated, for example with the non-competitive 
NMDA antagonists ketamine,39 phencyclidine39 189 
and MK-801/dizolcipine107 189, the competitive 
NMDA antagonists CGS 19755 and D-CPP-ene40 107 
and agents acting at the polyamine site41 and also the 
glycine site121 of the NMDA receptor. The AMPA 
receptor competitive antagonist NBQX appears to 
share similar properties.120 Furthermore, riluzole (a 
drug inducing a use-dependent block of presynaptic 
glutamate fibres123) has been reported to reduce the 
MAC for halothane and potentiate barbiturate 
anaesthesia in vivo.130 

There is thus convincing evidence that a state of 
anaesthesia is associated with inhibition of EAA 
neurotransmission throughout the CNS. 
Significantly, inhibition of spinal cord EAA neuro- 
transmission34 186 187 could also contribute to anaes- 
thesia (in the sense of unresponsiveness to surgical 
stimuli) with the demonstration that the MAC for 
isoflurane in the rat is independent of forebrain 
integrity170 171 and that a site of action distal to the 
brainstem contributes significantly to the anaesthetic 
effects of isoflurane in the goat.422 

It must be emphasized that anaesthesia induced in 
humans with glutamate antagonists such as keta- 
mine or phencyclidine differs from that induced 
by other anaesthetic agents. It is characterized by 



736 British Journal of Anaesthesia 

sedation, hypertonus, amnesia and profound 
analgesia54 and has been termed dissociative anaes- 
thesia, referring to a supposed “dissociation of the 
limbic from the thalamo-neocortical systems”.35 
When auditory evoked responses (AER) are used to 
assess depth of anaesthesia, it is apparent that the 
effects of ketamine differ from those of the majority 
of general anaesthetics. Using this technique, volatile 
agents, propofol, etomidate and barbiturates signifi- 
cantly reduce the amplitude and increase the latency 
of the early cortical part of the AER,94 whereas keta- 
mine (in common with opioids and benzo- 
diazepines) has little or no effect on the AER.192 
Further differences between ketamine and other i.v. 
anaesthetics are apparent when effects on cerebral 
metabolism are considered. Barbiturates globally 
depress cerebral metabolism80 while other i.v. agents 
(such as propofol, Althesin and etomidate) predom- 
inantly depress forebrain metabolism and spare 
hindbrain metabolism.38 42 43 In contrast, anaesthetic 
doses of ketamine have little effect on metabolism in 
most brain regions but cause a marked increase in 
metabolism in the hippocampus.37 44 Enhanced 
hippocampal metabolism has also been shown with 
volatile anaesthetics146 157 although this is accom- 
panied by global inhibition of metabolism in other 
brain regions.77 157 

If the increased hippocampal metabolism seen 
with anaesthetic doses of ketamine is mediated via its 
action at the NMDA receptor, then similar increases 
observed with volatile agents may indicate a 
common mechanism of action. Conversely, the 
markedly different effects seen with barbiturates, 
propofol, etomidate and Althesin suggest that 
actions on EAA neurotransmission may be less 
significant with these i.v. anaesthetics. The effects of 
different anaesthetics on cerebral metabolism may 
reflect the balance between anaesthetic actions on 
EAA neurotransmission and inhibitory neurotrans- 
mitter systems, notably the GABAA receptor (for 
reviews see Frank and Lieb67 and Pocock and 
Richards166). This balance could in turn determine 
the clinical manifestations of the anaesthetic state 
induced by each individual agent. 

EAA and memory: is this how anaesthetics 
prevent recall? 
Sub-anaesthetic or sedative doses of general anaes- 
thetics have powerful inhibitory effects on short term 
memory,68 143 and the reduction in the transfer of 
information from the periphery to the cerebral 
cortex3 associated with general anaesthesia prevents 
the recall of intraoperative events. EAA neurotrans- 
mission plays a central role in the pharmacology of 
learning and memory90 142; therefore it is important 
to consider if this absence of memory for intra- 
operative events is a consequence of inhibition by 
general anaesthetics of EAA-mediated processes. In 
order to do so, it is necessary first to provide an 
overview of the fundamental mechanisms involved 
in memory at both synaptic and more global levels, 
and subsequently to review the available data 
relating to anaesthetic interactions with these 
systems. 

Current theories propose that at the synaptic level, 
learning and memory are a consequence of long-term 
potentiation (LTP) of synapses in specific neuronal 
pathways within the CNS.19 First described in the 
hippocampus by Bliss and Lømo in 1973,20 LTP is a 
form of synaptic plasticity causing facilitation of 
neurotransmission which may last for up to several 
weeks in vitro. LTP has been demonstrated subse- 
quently in other regions of the CNS, including the 
cerebral cortex8 17 and spinal cord.165 172 The 
mechanisms underlying LTP have been investigated 
extensively and it is clear that EAA play a key role. 

This key role for EAA in memory has been con- 
firmed in animal models of learning using the Morris 
water maze. This tests the ability of the rat to learn 
the location of a hidden platform in a tank of opaque 
water in which it is forced to swim.142 Intra- 
cerebroventricular administration of NMDA 
antagonists impairs the ability of the rat to learn a 
new location of the platform, but not to find a 
location that was learned previously; importantly, 
this impairment is associated with disruption of 
hippocampal LTP in vivo.142 These and similar data 
from a variety of animal models of learning and 
memory provide good evidence that “NMDA 
receptors are involved in the acquisition of new informa- 
tion but not in its subsequent retrieval or expression.142 
Similarly, in humans, administration of sub- 
anaesthetic doses of the non-competitive NMDA 
antagonists ketamine and phencyclidine causes 
dose-dependent anterograde amnesia but has no 
effect on established memory.9 69 

The hippocampus undoubtedly plays an impor- 
tant role in learning and memory,199 as is evident in 
humans from the gross impairment of short term 
memory in patients with hippocampal lesions, but it 
does not function in isolation: current concepts of 
memory propose that the hippocampus functions in 
concert with neuronal networks of the cerebral 
cortex. Memory “traces” are thought to be retained 
briefly in the cortical areas that process incoming 
information, but hippocampal activation (presum- 
ably involving LTP as described above) is essential 
to establish new memory. After hippocampal activa- 
tion, medial temporal lobe structures direct the con- 
solidation of memories in specific neuronal networks 
of the neocortex198 199 where again NMDA-mediated 
LTP may play a critical role.137 Activation of specific 
hippocampal and cortical regions during learning 
and memory has been confirmed in vivo in humans 
using positron emission tomography studies of 
cerebral blood flow181 120 and has led to the develop- 
ment of a model of hemispheric asymmetry for 
memory encoding and retrieval (HERA) involving 
large distributed cortical neuronal networks.208 

The data discussed above provide a mechanistic 
model for a human memory system consisting of 
several systems and subsystems.219 Two separate 
systems, explicit memory and implicit memory, can 
be identified readily by psychological tests. The 
former requires deliberate and conscious retrieval of 
information and can be assessed by recall and recog- 
nition tests, while the latter does not require con- 
scious recall but is manifest as improvement in 
performance in skill learning or task-completion 
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tests. General anaesthesia by definition inhibits 
explicit memory of intraoperative events, however, 
several studies have demonstrated that some forms 
of implicit memory may still occur during anaes- 
thesia (reviewed in Ghoneim and Block68), thereby 
suggesting that the different systems of memory may 
be differentially sensitive to anaesthetics. For 
example, using sub-anaesthetic concentrations of 
isoflurane it has been shown that implicit memory 
occurs at concentrations of isoflurane (0.15–0.3 
MAC) that impair explicit recall57; and when 
coherent frequency of auditory evoked response is 
used to assess quantitatively depth of anaesthesia,143 
inhibition of implicit memory requires a greater 
depth of anaesthesia than does inhibition of explicit 
recall. 

DOES INHIBITION OF EAA-DEPENDENT 
NEUROTRANSMISSION SUPPRESS LEARNING AND 
MEMORY UNDER GENERAL ANAESTHESIA? 

To answer this question we need to consider 
the mechanisms of hippocampal LTP, the best 
understood synaptic model of memory.19 A 
schematic representation of the processes involved in 
hippocampal LTP is shown in figure 3. 

It is clear that volatile and i.v. anaesthetics 
inhibit EAA neurotransmission (table 1), and 
most,13 101 124 125 126 179, but not all,161 electrophysio- 
logical studies have suggested that hippocampal 
excitatory neurotransmission in particular is 
inhibited. Anaesthetic inhibition of EAA release and 
NMDA receptor function therefore has the potential 
to modify the induction (step 1) of LTP. 
Furthermore, there is evidence that IP3-gated Ca2� 
stores are depleted by volatile anaesthetics45 suggest- 
ing that the second phase of LTP-induction might 
also be sensitive to volatile anaesthetic inhibition. Is 
this a means by which anaesthetics suppress learning 
and memory ? 

Only two studies have specifically examined the 
effects of volatile anaesthetics on hippocampal LTP 
and these have produced conflicting results. 
MacIver, Tauck and Kendig126 demonstrated that 
in vitro, both halothane and methoxyflurane at 
clinically relevant concentrations attenuated 
excitatory neurotransmission in the hippocampus, 
but while halothane markedly inhibited induction of 
LTP, methoxyflurane had no effect. In a separate 
study in which LTP was induced in the anaes- 
thetized rat in vivo, it was reported that hippocampal 
excitatory neurotransmission and induction of LTP 
was unaffected by halothane, enflurane or isoflurane 
at clinically relevant concentrations.161 The insensi- 
tivity of hippocampal neurotransmission to volatile 
anaesthetics in the latter study does not correlate 
with the inhibitory effects of volatile anaesthetics 
reported elsewhere, but it must be noted that control 
values for hippocampal neurotransmission in this 
study were measured in animals already anaes- 
thetized with urethane, an agent which may 
itself affect excitatory neurotransmission in the 
hippocampus and induction of LTP.174 

In conclusion, there is clear evidence that inhibi- 
tion of EAA neurotransmission is a common 
property of general anaesthetics (although the pre- 
synaptic or postsynaptic locus of inhibition may vary 
with each agent), and direct, or indirect, modifica- 
tion of NMDA receptor function has been putatively 
proposed as the final common pathway of anaes- 
thetic action.66 However, although NMDA antago- 
nists both contribute to the anaesthetic state and 
suppress memory, effects that are clearly associated 
with inhibition of hippocampal LTP in vivo, it 
remains uncertain if volatile and i.v. anaesthetic 
agents share this effect on LTP. Further studies are 
necessary to confirm whether the loss of awareness 
caused by general anaesthesia is a consequence of 
inhibition of LTP in the hippocampus or cerebral 
cortex. 

Excitatory amino acids and pain 
Peripheral tissue injury creates a continuing noxious 
input to the spinal cord via A� and C-fibres which 
results in a progressive increase in the response of 
neurones within the spinal cord dorsal horn to 
further afferent input. This plasticity of spinal cord 
processing of nociceptive information plays a critical 
role in post-injury pain hypersensitivity225 and 
chronic pain syndromes30 and is termed central 

 

Figure 3 Schematic representation of the mechanisms involved in 
hippocampal long-term potentiation (LTP). 1 Induction of LTP is 
dependent on EAA release and NMDA receptor activation resulting 
in enhanced Ca2� entry into the postsynaptic neurone. 2 This Ca2� 
signal may be supplemented by Ca2� release from inositol 1,4,5- 
trisphosphate (IP3) gated stores which occurs as a consequence of 
co-activation of mGlu-receptors.58 3 The increase in Ca2� 
concentration in the postsynaptic cell initiates a chain of events at 
the synapse secondary to the activation of numerous Ca2� 
dependent enzymes. 4 This results in postsynaptic hyperexcitability 
as a consequence of phosphorylation and altered expression of 
membrane proteins, including an increase in EAA receptor number. 
5 This may be augmented by release of retrograde transmitter(s) 
(possible candidates include NO and arachidonic acid) causing the 
presynaptic nerve terminal to enhance its release of EAA. Together 
pre- and postsynaptic events lead to enhanced transmission at the 
affected synapses. 6 These events are consolidated by changes in 
gene transcription and altered synaptic morphology, and while 
induction of LTP is prevented by NMDA antagonists, established 
LTP is unaffected by these agents. GLU�Glutamate; NMDA�N- 
methyl-D-aspartate; AMPA��-amino-3-hydroxy-5-methyl-4- 
isoxazolepropionate; mGluR�metabotropic glutamate receptor; 
PIP�phosphatidyl-inositol-4,5-bisphosphate; NO�nitric oxide; 
PLC�phospholipase C; IP3�inositol-1,4,5-trisphosphate; 
IP3R�IP3 receptor; PLA2�phospholipase A2; G�GTP-binding 
protein; P�phosphorylation site; DAG�diacylglycerol; 
(a)�depolarization and action potential generation. 
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sensitization. The pharmacology of central sensitiza- 
tion and spinal pain transduction has been a subject 
of many recent reviews48 52 212 224 227 and it is clear 
that EAA play a key role (fig. 4). A� and C-fibre 
primary afferent nerve terminals within the substan- 
tia gelatinosa of the spinal cord release glutamate 
(and neurokinins) in response to noxious stimuli. 
Glutamate binds to both iGlu-receptor and mGlu- 
receptor subtypes which may be co-localized on the 
same postsynaptic cell. The acute response to injury 
at the synaptic level is mediated by glutamate acting 
at AMPA receptors and neurokinins acting at NK1 
receptors, the consequence of which is brief depolar- 
ization of dorsal horn neurones and activation of 
central pain pathways. More prolonged afferent 
input via A� and C-fibres causes NMDA receptor 
activation when AMPA receptor and neurokinin 
receptor mediated depolarization of the dorsal horn 
neurone is of sufficient magnitude and duration to 
remove the Mg2� block of the NMDA receptor 
channel. NMDA receptor activation (with a possible 
contribution from mGlu-receptor) leads to central 
sensitization and resultant hyperalgesia. Central 
sensitization may be consolidated by protein kinase 
C-mediated phosphorylation of the NMDA receptor 
which reduces the Mg2� gating characteristics of the 
channel26; indeed, inhibition of protein kinase C 
has been reported to prevent the development of 
hyperalgesia in a rat model of central sensitization.230 

ANAESTHETIC AND ANALGESIC EFFECTS ON SPINAL 
EAA MECHANISMS 

Before reviewing the analgesic or “anti-hyperalgesic” 
potential of agents that block EAA receptors, it is 
of interest to examine how established anaesthetic 
and analgesic agents may interact with EAA 
neurotransmission in the spinal cord. 

Sub-anaesthetic concentrations of some volatile 
anaesthetic agents may produce intense analgesia. 
Trichloroethylene and methoxyflurane were used 
previously for obstetric analgesia and there is good 
evidence that isoflurane may be similarly effective.217 
Such analgesia may be a consequence of direct effects 
on acute pain transduction at the level of the spinal 
cord where electrophysiological studies have shown 
isoflurane to inhibit nociceptive responses dependent 
on both NMDA receptor- and non-NMDA receptor- 
mediated EAA neurotransmission.34 186 187 There is 
also some evidence1 72 153 that modern volatile anaes- 
thetic agents (halothane, enflurane, isoflurane and 
desflurane) can partially suppress spinal cord 
sensitization in a rat model in which subcutaneous 
formalin injection produces a biphasic behavioural 
response,221 the second phase of which corresponds 
to dorsal horn NMDA receptor activation.75 
However, when formalin-induced sensitization in the 
spinal cord was measured by expression of the 
immediate early gene c-fos (a molecular marker of 
nociception144) halothane anaesthesia was without 
effect.205 Therefore, the potential of volatile anaes- 
thetics to influence pain in the postoperative period 
may be limited. Nitrous oxide has also been reported 
to inhibit central sensitization in a dose-dependent 
manner,72 153 however nitrous oxide induces 
endorphin release65 and its effects on central sensiti- 
zation are partially reversed by naloxone. This does 
not suggest a direct effect on spinal EAA neuro- 
transmission, but rather the activation of supraspinal 
opioid receptor mediated mechanisms which 
influence spinal sensitization.70 74 Surprisingly, the 
effect of combined administration of nitrous oxide 
with either isoflurane1 or halothane72 153 was 
antagonistic and resulted in markedly less inhibition 
of central sensitization than did the administration of 
each volatile agent alone. The mechanism and site of 
this interaction is unclear, and further studies are 
warranted to assess the clinical significance of this 
finding. 

The spinal analgesic actions of opioid agonists and 
�2-receptor agonists, at least in part, involve EAA 
neurotransmission. The demonstration that inhibi- 
tion of the release of glutamate from dorsal horn 
nociceptive neurones is a consequence of both 
opioid46 97 and �2-agonist95 administration may 
explain their synergistic analgesic effects in animal 
models of pain.141 158 159 Postsynaptically the NMDA 
receptor ion channel complex may be directly 
modulated in addition by � opioid receptor 
agonists.184 Furthermore, a complex interrelation- 
ship between NMDA receptor and �-opioid 
receptor mechanisms may control the development 
of spinal tolerance and dependence on opioids.53 

EAA ANTAGONISTS AS ANALGESICS 

There is now a considerable literature encompassing 
the analgesic or antinociceptive effects of agents that 
inhibit EAA neurotransmission (for reviews see 
Dickenson,48 Dray, Urban and Dickenson,52 
Sukiennik and Kream,204 Urban, Thompson and 
Dray212 and Yaksh and Malmbergh227). Many 
studies have focused on the NMDA receptor, where 

 

Figure 4 Diagrammatic representation of the pharmacology of 
spinal pain transduction within the dorsal horn. Acute pain is 
mediated by glutamate acting at AMPA/KA receptors and 
neurokinins acting at NK1 receptors, the consequence of which 
is brief postsynaptic depolarization of dorsal horn neurones and 
activation of central pain pathways. More prolonged afferent 
input via A� and C-fibres causes NMDA receptor activation 
when AMPA receptor- and neurokinin receptor-mediated 
depolarization of the dorsal horn neurone is of sufficient 
magnitude and duration to remove the Mg2� block of the 
NMDA receptor LOC. NMDA receptor activation (with 
possible contribution from mGlu-receptor) leads to central 
sensitization and resultant hyperalgesia. GLU�Glutamate; 
NMDA�N-methyl-D-aspartate; NK�neurokinin; AMPA� 
�-amino-3-hydroxy-5-methyl-4-isoxazolepropionate; 
(a)�depolarization and action potential generation. 
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open-channel blockade,31 61 228 competitive glutamate 
antagonism,31 75 glycine site antagonism31 49 or 
polyamine site manipulation29 modify the response 
to painful stimuli in animal models of pain. Despite 
the diversity of pain models that have been used in 
these and other studies, most data suggest that 
NMDA receptor antagonism causes significant anti- 
nociception against persistent inflammatory or 
neuropathic models of pain but has little effect on 
brief nociceptive tests of acute pain. A clear demon- 
stration of this effect is seen with the rat formalin 
model which may correspond to post-surgical pain; 
in this model which results in a brief acute pain 
behavioural response followed after a latent period 
by a longer inflammatory second phase associated 
with central sensitization, administration of NMDA 
receptor antagonists has no effect on the first phase 
but reduces or abolishes the delayed second phase of 
this test.75 228 Similarly, in a study of human experi- 
mental pain, ketamine had no effect on a single 
noxious electrical stimulus, but had a marked 
analgesic effect on repeated stimuli associated with 
central sensitization.6 

Given that the initial response to injury 
involves activation of AMPA receptors in the 
substantia gelatinosa, antagonism at this site has 
the potential to produce analgesia. Two groups 
have reported that the competitive AMPA 
antagonist NBQX has antinociceptive effects that 
differ qualitatively from those of NMDA receptor 
antagonism,156 226 but a more recent study31 
failed to demonstrate any antinociceptive effect of 
AMPA antagonists in a variety of pain models. 
Irrespective of whether or not AMPA-antagonism 
can cause analgesia, it should be noted that 
Dickenson47 considered that this pharmacological 
approach might be disadvantageous because it 
would not target a pathologically activated pain 
pathway but would inhibit a broad spectrum of 
afferent and efferent fast excitatory synaptic path- 
ways throughout the CNS. Although NMDA 
receptor-mediated mechanisms are more specific 
to pain pathways it is unlikely to be their sole 
function in the spinal cord, for example spinal 
NMDA receptor-mediated pathways may also play 
a key role in the control of locomotion.2 This could 
explain the motor dysfunction that has frequently 

accompanied administration of EAA antagonists 
and which has important implications regarding 
the interpretation of their effects in tests of 
nociception.31 However, combined administration 
of competitive and non-competitive NMDA 
antagonists with agents acting at glycine and 
polyamine sites can produce highly effective 
antinociception in the formalin test without 
behavioural effects or motor dysfunction32 and 
suggests that this problem may not be 
insurmountable. 

Excitatory amino acids and neurotoxicity 
After traumatic or ischaemic damage to the CNS 
there is a pathological release of EAA from neurones 
and glia which plays a central role in mediating 
more extensive excitotoxic neuronal degeneration. In 
animal models, massive increases in extracellular 
levels of glutamate follow ischaemic12 or traumatic 
insult to the brain98 or to the spinal cord.116 Similar 
increases in glutamate concentrations have been 
measured in cerebrospinal fluid in humans after 
head injury11 and this increase appears to persist for 
several days after injury. These increased extra- 
cellular glutamate concentrations activate an 
excitotoxic cascade as a consequence of uncon- 
trolled activation of both iGlu-receptors and mGlu- 
receptors. The molecular mechanism of this 
cascade has been reviewed recently118 and can be 
summarized as follows (see fig. 5). Ca2� entry 
through both EAA-operated and voltage-operated 
Ca2� channels, together with Ca2� release from 
intracellular stores results in uncontrolled activation 
of neuronal protein kinases, phospholipases, 
proteases and nitric oxide synthase. The consequent 
proteolysis, lipid peroxidation and free radical 
formation results in degeneration of central 
neurones. Although EAA-mediated neuronal death 
can occur within minutes and a proportion of 
neurones die in the acute phase of injury, a large 
number of neurones instead suffer delayed death.118 
Much interest has therefore arisen from the 
potential to ameliorate excitotoxic neuronal damage 
by modification of EAA release, EAA receptor 
antagonism or inhibition of subsequent proteolysis 
and lipid peroxidation.122 

 

Figure 5 Schematic representation of the central role of glutamate in excitotoxic neuronal injury (modified and 
redrawn from Lynch and Dawson118). GLU�Glutamate; NMDA�N-methyl-D-aspartate; AMPA��-amino-3- 
hydroxy-5-methyl-4-isoxazolepropionate; G�G-protein; NO�nitric oxide; PLC�phospholipase C; PLA2 
�phospholipase A2; VOCC�voltage-operated Ca2� channel; cAMP� adenosine 3’-5’-monophosphate; 
cGMP�cyclic guanine 3’-5’-monophosphate; (a)�depolarization and action potential generation. 
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STRATEGIES TO REDUCE EAA RELEASE 

Of all the strategies to reduce EAA release, it is 
essential to first consider the beneficial effects of 
controlled hypothermia. It is well established that 
mild to moderate hypothermia results in significant 
cerebral protection against ischaemic brain injury214; 
this protective effect cannot wholly be explained by a 
global reduction in cerebral metabolic rate. 
However, it has recently been reported that mild to 
moderate hypothermia can markedly reduce the 
release of glutamate after experimental global 
cerebral ischaemia.84 Given that the magnitude of 
this effect was much greater than the estimated 
reduction in global cerebral metabolic rate, the 
authors concluded that a reduction in glutamate 
release may contribute significantly to the neuro- 
protective effect of mild to moderate hypothermia. 

As discussed previously, volatile anaesthetic 
agents, notably isoflurane109 can strongly inhibit the 
depolarization-evoked release of EAA in vitro and it 
has been argued that this may result in protection 
from cerebral ischaemia. Recent evidence demon- 
strates that isoflurane can effectively inhibit the 
ischaemia-induced release of glutamate to an extent 
comparable with that of hypothermia60 147 160 and 
may also reduce ischaemia-induced NMDA 
receptor activation in vitro,16 however, in animal 
models of ischaemic neuronal injury, isoflurane 
anaesthesia does not appear to reduce injury in 
comparison with nitrous oxide anaesthesia215 and its 
neuroprotective potential in vivo remains the subject 
of debate. 

Several novel anticonvulsant agents share a 
common mechanism of action in that they reduce 
EAA release from central neurones, probably as a 
consequence of an inhibitory effect at presynaptic 
Na� channels.211 This class of agents are neuro- 
protective in animal models of focal or global 
cerebral ischaemia: thus riluzole,167 felbamate,216 
lamotrigine and its congeners196 222 all reduce infarct 
size or neuronal loss after ischaemic insult and may 
improve neurological outcome and survival. They 
are most effective when administered before 
ischaemia, but importantly, a window of opportunity 
appears to exist in the immediate post-ischaemic 
period when their administration is also protective. 

EAA ANTAGONISTS AS NEUROPROTECTIVE AGENTS 

Postsynaptic neuronal depolarization, both as a 
direct consequence of ischaemia and as a result of 
iGlu-receptor activation, removes the Mg2� block of 
the NMDA receptor thereby allowing uncontrolled 
Ca2� entry via the NMDA receptor LOC. In conse- 
quence NMDA receptor antagonists have attracted 
much interest as potential cerebral protective 
agents.113 

Competitive antagonists at the NMDA receptor 
such as d-CPP-ene and CGS 19755 are clearly 
neuroprotective when administered pre-emptively or 
immediately after injury in models of global and 
focal ischaemia.135 However, their efficacy when 
administered after injury/ischaemia may be limited 
by the relatively slow penetration into the CNS after 

parenteral administration, consequently there may 
therefore be only a narrow window of opportunity 
for their administration. Open-channel NMDA 
antagonists such as dizolcipine have the theoretical 
advantage over competitive EAA antagonists in that 
antagonism should not be overcome by the patho- 
logically high glutamate concentrations associated 
with cerebral ischaemia. Dizolcipine clearly provides 
protection in animal models of cerebral ischaemia89 
and traumatic injury to the brain or spinal cord.63 
Again, cerebral protection is evident whether admin- 
istered before or after injury, but although agents 
such as dizolcipine penetrate readily into the CNS 
after systemic administration, it is unclear if they are 
more effective when administered after injury than 
are competitive antagonists. A variety of other open- 
channel NMDA antagonists have been shown to 
have experimental neuroprotective properties113 
and, significantly, these include agents which have 
been used in humans such as the dissociative 
anaesthetic ketamine117 and the antitussive agent 
dextromethorphan.27 62 

The multiple modulatory sites of the NMDA 
receptor provide other potential pharmacological 
targets for cerebral protection. For example, the 
neuroprotective properties of felbamate may result 
from glycine site antagonism in addition to its 
previously described effects on glutamate 
release.211 216 Nitroso compounds such as nitro- 
prusside or glyceryl trinitrate which interact with 
the redox modulatory site and prevent EAA- 
induced neuronal death in vitro,110 114 are another 
intriguing class of agents with potential neuro- 
protective properties.73 The degree of physio- 
logical blockade of the NMDA receptor channel by 
Mg2� ions may also be an important determinant 
of neuronal injury, particularly given that tissue 
Mg2� concentrations have been reported to decline 
rapidly after both major surgery185 207 and CNS 
injury.111 Magnesium administration has been 
reported to be protective against CNS 
ischaemia,71 195 213 and enhanced blockade of the 
NMDA receptor channel may at least in part 
underlie this action. 

Clinical implications 
The ubiquity of EAA neurones throughout the CNS 
emphasizes the importance of EAA-mediated neuro- 
transmission in anaesthesia, analgesia and neuro- 
logical intensive care. Equally, the importance of 
EAA neurotransmission in cognition, memory, 
sensation and motor function certainly contributes 
to the broad spectrum of neuropsychological side 
effects that have limited the clinical use of dis- 
sociative anaesthetic agents such as ketamine. 
Nevertheless, we already influence this system with 
the use of volatile (and to a lesser extent i.v.) anaes- 
thetic agents without all of these adverse effects. 
Furthermore, there is evidence that indicates that it 
may be the high affinity of established dissociative 
anaesthetic agents (including ketamine) for the 
NMDA receptor, and their slow dissociation from 
the open-channel binding site, that results in their 
adverse neuropsychological profile.180 Drugs with 
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more rapid dissociation kinetics from the open chan- 
nel, or those interacting with other binding sites on 
the NMDA receptor, may have a more attractive 
side effect profile, and these together with their 
targeting at spinal (as opposed to higher) centres 
provides the potential for a broader clinical use of 
these agents. Much interest has centred on the 
role of EAA neurotransmission in the fields of 
pain48 52 212 227 and cerebral protection89 113 135 180 
although less emphasis has been placed on its 
potential role in anaesthesia. 

There is no doubt that inhibition of EAA neuro- 
transmission in the CNS, by antagonism of a variety 
of receptor sites39 40 41 120 121 189 and to a lesser extent 
by inhibition of glutamate release,130 can promote or 
induce anaesthesia but the adverse behavioural 
effects of high doses of many of these agents make it 
unlikely that they could be widely exploited for 
clinical anaesthesia, particularly where rapid 
recovery is required. However, the ability of this 
group of drugs to reduce the MAC of other anaes- 
thetic agents suggests that they could have a useful 
role, particularly in high-risk patients. The added 
advantages of intense analgesia and cerebral protec- 
tion suggest that inhibition of EAA neurotrans- 
mission may contribute to optimally balanced 
anaesthesia with special relevance to trauma, cardiac 
and neurosurgery. Furthermore, given the ability of 
NMDA antagonists to inhibit LTP and induce 
anterograde amnesia, these agents may prove 
useful in this high-risk group to reduce the risk of 
intraoperative awareness. 

The importance of the NMDA receptor in the 
induction and maintenance of central sensitization 
and the contribution of this process to both acute 
surgical pain and perhaps more importantly, chronic 
pain syndromes strongly suggests that agents affect- 
ing spinal EAA neurotransmission may be useful 
analgesic agents in areas where currently available 
agents are of only limited efficacy. As discussed 
above, this could involve the systemic administration 
of such agents as anaesthetic adjuncts, and there is, 
for example, evidence that systemic peroperative 
administration of ketamine may reduce postopera- 
tive wound hyperalgesia209 and analgesic require- 
ments183 209 without psychotomimetic side effects. 
There is also recent evidence that similar benefit may 
be achieved with the peroperative administration of 
magnesium sulphate,207 an effect that at least in part 
may be a consequence of NMDA ionophore 
blockade. 

In the chronic pain setting, several reports indicate 
that ketamine can provide analgesia and relief 
of hyperaesthesia/allodynia in neuropathic pain 
resistant to conventional therapy with tricyclic anti- 
depressant, anticonvulsant and membrane stabiliz- 
ing agents.10 59 151 200 Similarly, subcutaneous or i.v. 
infusion of ketamine may be highly efficacious in 
opioid-resistant cancer pain.136 Unfortunately, in 
several cases, dosage has been limited or treat- 
ment terminated by psychotomimetic effects, and 
certainly for outpatient treatment of chronic pain, an 
agent lacking psychotomimetic effects and suitable 
for oral administration is ideally required. The anti- 
tussive dextromethorphan is the only other agent in 

clinical use with NMDA antagonist activity28 and it 
has a good safety record, but a study of oral admin- 
istration of this agent failed to show any benefit in a 
group of patients with neuropathic pain resistant to 
conventional therapies.127 However, there is an 
encouraging recent report of oral administration of 
ketamine providing pain relief without significant 
side effects in opioid-resistant neuropathic pain.23 

In an attempt to limit supraspinally mediated 
adverse effects, considerable interest has focused on 
intrathecal or extradural administration of NMDA 
receptor antagonists, thereby targeting EAA 
synapses in the substantia gelatinosa of the spinal 
cord. While experience in human subjects is limited, 
animal studies convincingly demonstrate the effec- 
tiveness of spinally administered NMDA receptor 
antagonists in a variety of pain models correspond- 
ing to both post-surgical and chronic pain states. 
Although many of the studies of NMDA receptor 
open-channel blockers such as ketamine and 
dizolcipine (MK801) have shown significant motor 
and behavioural effects even after spinal administra- 
tion, co-administration of low doses of open-channel 
blockers with agents acting at other regulatory sites 
on the NMDA receptor may circumvent behavioural 
and motor problems32 rendering them more suitable 
for clinical use. Concern has also been expressed 
regarding the neurotoxicity of ketamine and 
dizolcipine.129 154 155 However, low concentrations of 
preservative-free ketamine are not neurotoxic21 and 
have been used in humans by both intrathecal18 and 
extradural85 99 145 173 routes. Competitive antagonists 
may have fewer adverse effects and there is evidence 
that the potent NMDA antagonist CPP is effective 
in several pain models at doses that do not affect 
motor function or behaviour.104 This finding, 
together with its apparent lack of neurotoxicity105 or 
effect on spinal cord blood flow,103 indicates that 
CPP may be a prototypical agent for clinical spinal 
administration in human. 

Pathological release of glutamate clearly plays a 
key role in ischaemic excitotoxic damage to the 
CNS. It is possible to modify both the release of 
glutamate and its receptor-mediated effects at 
multiple sites and a combination of agents acting 
both pre- and postsynaptically, perhaps in conjunc- 
tion with mild to moderate hypothermia, may be 
necessary to minimize neuronal damage. Concern 
has been expressed over the behavioural and neuro- 
psychological effects of glutamate antagonists— 
particularly those acting at the NMDA open- 
channel site—at the dosage required for cerebral 
protection.113 However, both memantine (an anti- 
Parkinsonian drug which blocks the NMDA 
receptor open-channel site with low affinity and 
rapid kinetics of dissociation) and felbamate (a 
glycine site NMDA receptor antagonist and an 
inhibitor of glutamate release) have been shown to 
be effective in animal models of CNS ischaemia at 
concentrations that are tolerated clinically in 
humans.25 216 They may therefore be prototypical 
agents for perioperative use in neurosurgical and 
perhaps cardiac anaesthesia if rapid recovery is 
required. The multiple facets of EAA-mediated 
excitotoxicity provide many intriguing therapeutic 
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possibilities in this area and in addition to evaluating 
new agents it may be necessary to reappraise the use 
of established techniques, including volatile anaes- 
thetics, magnesium administration and the use of 
nitroso compounds such as glyceryl trinitrate. 

The clinical pharmacology of EAA neurotransmis- 
sion is still in its infancy; few of the agents that 
specifically influence EAA release or interact with 
the growing family of glutamate receptors have as yet 
progressed beyond preliminary clinical studies or 
isolated case reports. Nevertheless, an understand- 
ing of this rapidly expanding field of pharmacology is 
of paramount importance in order that we may 
optimize our management of high-risk patients and 
acute or chronic pain. 
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