<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDITORIAL</td>
<td>1</td>
</tr>
<tr>
<td>ORIGINAL</td>
<td></td>
</tr>
<tr>
<td>The effect of cyclopropane, halothane and ether on sympathetic ganglionic transmission</td>
<td>3</td>
</tr>
<tr>
<td>By T. J. Biscoe, MB., B.Sc., and R. A. Millar, M.D., M.Sc., F.F.A.R.C.S., Agricultural</td>
<td></td>
</tr>
<tr>
<td>Cardiac arrhythmias occurring during halothane anaesthesia in cats</td>
<td>13</td>
</tr>
<tr>
<td>By I. F. H. Purchase, Ph.D., B.V.Sc., M.R.C.V.S., School of Veterinary Medicine,</td>
<td></td>
</tr>
<tr>
<td>Cambridge.</td>
<td></td>
</tr>
<tr>
<td>Distribution and excretion of methohexidine in man: a study using gas and thin layer</td>
<td>23</td>
</tr>
<tr>
<td>chromatography</td>
<td></td>
</tr>
<tr>
<td>Ph.D., B. Finkle, and J. LeBeau, Cuyahoga County Coroner’s Office, Department of</td>
<td></td>
</tr>
<tr>
<td>Pharmacology and Pathology and Division of Anesthesia, Department of Surgery, School of</td>
<td></td>
</tr>
<tr>
<td>Medicine, Western Reserve University, Cleveland, Ohio, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Gas chromatography using an internal standard for the estimation of methoxyflurane</td>
<td>29</td>
</tr>
<tr>
<td>levels in blood</td>
<td></td>
</tr>
<tr>
<td>E. S. Siker, M.D., Department of Anesthesiology, Mercy Hospital, Pittsburgh,</td>
<td></td>
</tr>
<tr>
<td>Pennsylvania, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Experimental study of emesis with ether and halothane</td>
<td>35</td>
</tr>
<tr>
<td>Bhargava, M.D., Ph.D., Departments of Anaesthesiology and Pharmacology, King George’s</td>
<td></td>
</tr>
<tr>
<td>Medical College, Lucknow, India.</td>
<td></td>
</tr>
<tr>
<td>CLINICAL</td>
<td></td>
</tr>
<tr>
<td>The elimination of carbon dioxide after total body perfusion</td>
<td>39</td>
</tr>
<tr>
<td>of Anaesthesia, Postgraduate Medical School and Hammersmith Hospital, London.</td>
<td></td>
</tr>
<tr>
<td>Studies of drugs given before anaesthesia X: Two non-phenothiazine anti-emetics—cyclo-</td>
<td>50</td>
</tr>
<tr>
<td>zine and trimethobenzamide</td>
<td></td>
</tr>
<tr>
<td>Nicholl, M.D., F.F.A.R.C.S., and J. Moore, M.D., F.F.A.R.C.S., Department of Anaesthe-</td>
<td></td>
</tr>
<tr>
<td>siics, The Queen’s University of Belfast, Northern Ireland.</td>
<td></td>
</tr>
<tr>
<td>HISTORICAL</td>
<td></td>
</tr>
<tr>
<td>A history of nitrous oxide and oxygen anaesthesia. Part IV: Hickman and the “introduc-</td>
<td>58</td>
</tr>
<tr>
<td>tion of certain gases into the lungs”</td>
<td></td>
</tr>
<tr>
<td>By W. D. A. Smith, O.B.E., M.B., B.S., F.F.A.R.C.S., Department of Anaesthesia, Leeds</td>
<td></td>
</tr>
<tr>
<td>University, Leeds, England.</td>
<td></td>
</tr>
<tr>
<td>CASE REPORT</td>
<td></td>
</tr>
<tr>
<td>Postoperative laryngeal stridor</td>
<td>73</td>
</tr>
<tr>
<td>APPARATUS</td>
<td></td>
</tr>
<tr>
<td>A simple photo-electric method for the estimation of blood loss during surgery</td>
<td>76</td>
</tr>
<tr>
<td>By J. F. Mainland, M.B., B.S., F.F.A.R.C.S., B.Sc., Department of Anaesthesia and Resus-</td>
<td></td>
</tr>
<tr>
<td>citation, and Department of Surgery, Monash University; Alfred Hospital, Prahran, Victo-</td>
<td></td>
</tr>
<tr>
<td>ria, Australia.</td>
<td></td>
</tr>
<tr>
<td>EDITORIAL</td>
<td></td>
</tr>
<tr>
<td>Pre-operative anxiety</td>
<td>79</td>
</tr>
</tbody>
</table>
ORIGINAL

The effect of halothane on the isolated cat heart .. 80
 By I. F. H. Purchase, Ph.D., B.V.Sc., M.R.C.V.S., School of Veterinary Medicine, University of Cambridge.

Postganglionic sympathetic discharge and the effects of inhalation anaesthetics .. 92

CLINICAL

Clinical studies of induction agents. XIV: A comparative study of venous complications following thiopentone, methohexitone and propanidid .. 115

Systemic effects of nitrous oxide when used with halothane and oxygen anaesthesia at normal body temperature .. 119
 By M. Bloch, M.D., Research Department of Anaesthetics, Royal College of Surgeons of England, London.

GENERAL INTEREST

The design and function of an intensive care unit .. 132

HISTORICAL

A history of nitrous oxide and oxygen anaesthesia. Part V: The crucial experiment, its eclipse, and its revival .. 143

EDITORIAL

Relative potency .. 163

ORIGINAL

The ignition risk with mixtures of oxygen and nitrous oxide with halothane .. 164
 By T. A. Brown and G. Morris, B.Sc, Ph.D., F.Inst.P., Research and Development Department, I.C.I. Nobel Division, Stevenston, Ayrshire, Scotland.

Some respiratory effects of the Trendelburg position during anaesthesia .. 174

Some respiratory effects of hyperventilation during general anaesthesia .. 179

Relative potency of amethocaine and lignocaine .. 185
 By C. W. White Jr., M.D., J. B. Weiss, M.D., and Dorothy K. Heerdegen, M.D., Anesthesia Department, University of Alabama Medical Center, Birmingham, Alabama, and Boston Lying-in Hospital, Boston, Massachusetts, U.S.A.
CLINICAL

A comparison of postoperative acid-base equilibrium and respiratory adequacy after two types of neuroleptanalgesia 191
By A. Hollmen, M.D., J. Hakalehto, K. Lauritsalo and M. A. K. Mattila, Central Hospital, Kuopio, Finland.

Tibial pressure algesimetry: the significance of changes in pain threshold with reference to the assessment of analgesia 198
By M. H. Thorpe, M.B., Ch.B., F.F.A.C.S., Department of Anaesthetics, Cardiff, South Wales.

Blind intubation 207
By P. Chandra, M.B., B.S., F.F.A.C.S., D.A., College of Medical Sciences, Banaras Hindu University, Varanasi-5, India.

HISTORICAL

A history of nitrous oxide and oxygen anaesthesia. Part VI: Henry Turton, William Lloyd Poundall and Hallam 212

PHYSICS

Physics applied to anaesthesia. IV: Heat 219

APPARATUS

A respiration integrator 223
By D. Whelpton, B.Sc., and B. W. Watson, B.Sc., Ph.D., Department of Medical Electronics, St. Bartholomew's Hospital, London.

CASE REPORT

Multiple halothane anaesthetics 228
By J. Bolčić-Wikerhauser, M.D., Department of Anaesthesia, Surgical Clinic, University of Zagreb, Yugoslavia.

EDITORIAL

Research fellowships 319
CONTENTS

ORIGINAL

Effect on pulmonary gas exchange of variations in inspiratory flow rate during intermittent positive pressure ventilation

Changes in respiratory physiology during ether/air anaesthesia

The oxygenation of blood by hydrogen peroxide: in vitro studies

Pentazocine and phenazocine: a double-blind comparison of two benzomorphan derivatives in postoperative pain

REVIEW

Serum cholinesterase deficiency. I: Disease and inheritance

By G. S. Robertson, M.B., Ch.B., F.F.A.R.C.S., Department of Anaesthetics, Royal Infirmary, Aberdeen, Scotland.

CLINICAL

Serum cholinesterase deficiency. II: Pregnancy

By G. S. Robertson, M.B., Ch.B., F.F.A.R.C.S., Department of Anaesthetics, Royal Infirmary, Aberdeen, Scotland.

Historical and experimental study of aspiration of gastric and oesophageal contents into the lungs in anaesthesia

Efficacy of thiethylperazine as a recovery room anti-emetic

By M. I. Gold, M.D., and B. P. Ruy, M.D., Department of Anesthesiology, University of Maryland School of Medicine and University Hospital, U.S.A.

Halothane in obstetrics: elective Caesarean section

The use of tacrine and suxamethonium in anaesthesia for Caesarean section

By Isobel Spets, M.B., Ch.B., D.A., F.F.A.R.C.S., Department of Anaesthetics, Glasgow Royal Infirmary and Glasgow Royal Maternity Hospital, Scotland.

Clinical studies of induction agents. XV: A comparison of the cumulative effects of thiopentone, methohexitone and propanidid

Case Reports

Ecothiopate iodide eye drops and prolonged response to suxamethonium

By E. J. Pantuck, M.D., Anesthesiology Service, The Presbyterian Hospital, New York, U.S.A.

Prolonged apnoea after suxamethonium injection associated with eye drops containing an anticholinesterase agent

By T. Gesztes, M.D., Department of Anaesthesia, Negev Central Hospital, Beer-Sheva, Israel.

Proceedings of the Anaesthetic Research Group (March 25)

Editorial

Liver injury

CONTENTS

Pulmonary changes after extracorporeal circulation in dogs

Some alterations in the pattern of drug metabolism associated with pregnancy, oral contraceptives, and the newly-born
By J. Selwyn Crawford, F.F.A.R.C.S., and Susannah Rudofsky, Chicago Lying-In Hospital, University of Chicago, USA.

The cardiovascular response of normal anaesthetized man to rapid infusion of saline
By V. Askrog, M.D., Department of Anaesthesiology, Bispebjerg Hospital, Copenhagen, Denmark.

Observations on tracheal trauma following suction: an experimental study
By A. K. Thambiran, M.B., Ch.B., (Natal), D.C.H.(Eng.), and S. H. Ripley, Ph.D., Departments of Medicine and Physiology, University of Natal, Durban, South Africa.

CLINICAL

The blood sugar response to anaesthesia and surgery in Southern Indians.

The use of dehydrobenzperidol and phenoperidine for repeated burns dressings: a preliminary communication

PHYSICS

Physics applied to anaesthesia. V: Gases and vapours (1)

CASE REPORTS

Subcutaneous emphysema, pneumomediastinum and pneumothorax
By M. R. Golding, M.D., B. J. Urban, M.D., and S. N. Steen, M.D., Departments of Surgery and Anesthesiology, State University, Downstate Medical Center, Kings County Hospital Center, Brooklyn, New York, U.S.A.

Respiratory depression following the use of tacrine and suxamethonium
By P. O. Older, M.B., B.S., L.R.C.P., M.R.C.S., J. M. Harris, B.Pharm., Ph.D., M.P.S., and M. Mitchell, B.Pharm. Ph.D., M.P.S., Department of Anaesthesics, Royal Sussex County Hospital, and Departments of Pharmacology and Biochemistry, School of Pharmacy, Brighton College of Technology, England.

Abnormal response to anaesthesia in a case of Huntington's chorea
By D. Denison Davies, F.F.A.R.C.S., Department of Anaesthesia, North and South Teesside Group of Hospitals, England.

An unusual case of live fish obstructing the airway
By K. M. Rajendran, M.B., B.S., and Sheila Satyanand, M.B., B.S., D.A., Department of Anaesthesiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, South India.

APPARATUS

A test of two types of halothane vaporizer

EDITORIAL

Pressing needs

ORIGINAL

Determination of the in vivo carbon dioxide titration curve of anaesthetized man
Increase of creatine kinase activity in serum as sign of muscular injury caused by intermittently administered suxamethonium during halothane anaesthesia

By T. Tammisto, M.D., and M. Airaksinen, M.D., Department of Pharmacology and the Eye Hospital, University of Helsinki, Finland.

CLINICAL

Propranolol (Inderal) during halothane anaesthesia

Local complications of thiopentone injection

By D. Denison Davis, F.F.A.R.C.S., Department of Anaesthesia, North and South Tees-side Group of Hospitals, England.

Muscle pain following administration of suxamethonium: the aetiological role of muscular fitness

The incidence and severity of muscle pains after suxamethonium when preceded by gallamine

GENERAL INTEREST

Centralized monitoring

By O. Secher, M.D., Department of Anaesthesics, Rigshospitalet, Copenhagen, Denmark.

HISTORICAL

A history of nitrous oxide and oxygen anaesthesia. Part VII: 1868—nitrous oxide anaesthesia takes root in Great Britain

PRELIMINARY COMMUNICATION

Stimulation of laryngospasm in the cat by volatile anaesthetics

APPARATUS

Heat clearance: a convenient method of estimating peripheral blood flow?

By W. J. Thomson, M.B., Ch.B., F.F.A.R.C.S., Department of Anaesthetics, Western Infirmary, Glasgow, Scotland.

EDITORIAL

Heroin and pentazocine

ORIGINAL

The use of electroencephalography to measure recovery time after intravenous anaesthesia

By A. Doenicke, J. Kugler, A. Schellenberger, and Th. Gürtner, Department of Anaesthesia of the Surgical Polyclinic, and Department of Neurophysiology of the Neurological Clinic, University of Munich, Western Germany.

Gas chromatography using an internal standard for the estimation of ether and halothane levels in blood

CLINICAL

Dosage of lignocaine in epidural block in relation to toxicity

The clinical evaluation of narcotic and sedative drugs. III: An evaluation of M.183

Studies of drugs given before anaesthesia. XI: Diamorphine (heroin) and morphine

Tubocurarine requirements in prolonged artificial ventilation in children

Variation in arterial pressure during anaesthesia with halothane in different gas mixtures

By N. E. Møller, M.D., and J. E. Poulsen, M.D., Department of Anaesthesia, Copenhagen County Hospital, Gentofte, Denmark.

Speculation

Speculation: The significance of varying the mode of injection of a drug...

Apparatus

Halothane concentrations obtained by the combined use of the Manley ventilator and the Fluotec vaporizer

By I. H. Andreesen, M.D., and J. Bay, M.D., Department of Anaesthesiology, Bispebjerg Hospital, Copenhagen, Denmark.

The use of ventilators and vaporizer performance

Case Report

Polycythaemic hypoxaemia and general anaesthesia

Veterinary

Halothane anaesthesia in turkeys

By R. S. Jones, B.V.Sc., M.R.C.V.S., The Veterinary Hospital, University of Liverpool, England.

Proceedings of the Anaesthetic Research Group (June 10)

Editorial

Adrenergic Drugs and their Antagonists

Pharmacological agents affecting the release and activity of catecholamines

By M. J. Rand and F. R. Trinker, Department of Pharmacology, University of Melbourne, Victoria, Australia.

The pharmacology of pressor drugs

By R. W. Foster, B.Sc, Ph.D., M.B., B.S., Department of Pharmacology, University of Manchester, England.

The significance of catecholamine release during anaesthesia

By H. L. Price, M.D., Department of Anesthesia, University of Pennsylvania, Philadelphia, Pa., U.S.A.

Surgical infiltration of pressor drugs and their interaction with volatile anaesthetics

By R. L. Katz, M.D., and G. J. Katz, M.S., Department of Anesthesiology, Columbia University, College of Physicians and Surgeons and the Anesthesiology Service, The Presbyterian Hospital in the City of New York, U.S.A.

Therapy with adrenergic drugs and their antagonists

By G. Howitt, M.D., M.R.C.P. (Ed.), M.R.C.P., Department of Cardiology, University of Manchester and The Royal Infirmary, Manchester, England.
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adsnergic drugs and their antagonists in anaesthesia</td>
</tr>
<tr>
<td>The management of the patient with a phaeochromocytoma</td>
</tr>
<tr>
<td>By S. De Blasi, Department of Anaesthesiology, Surgical Clinic, and School of Anaesthesiology, University of Bari, Italy.</td>
</tr>
<tr>
<td>PHYSICS</td>
</tr>
<tr>
<td>Physics applied to anaesthesia. VI: Gases and vapours (2)</td>
</tr>
<tr>
<td>EDITORIAL</td>
</tr>
<tr>
<td>ORIGINAL</td>
</tr>
<tr>
<td>The action of tacrine on neuromuscular transmission: a comparison with hexafluorenium</td>
</tr>
<tr>
<td>By J. H. Karis, M.D., W. L. Nastuk, Ph.D., and R. L. Katz, M.D., Columbia University, College of Physicians, New York City, U.S.A.</td>
</tr>
<tr>
<td>The effect of quinidine and procainamide on the neuromuscular blocking action of suxamethonium</td>
</tr>
<tr>
<td>The sedative effect of premedication as measured by catecholamine excretion</td>
</tr>
<tr>
<td>By L. R. Martinez, M.D., C. von Euler, M.D., and O. P. Norlander, M.D., Department of Anaesthesiology, Thoracic Clinic, Karolinska Hospital, Stockholm, Sweden.</td>
</tr>
<tr>
<td>Response of the newborn rabbit to acute anoxia and variations due to narcotic agents</td>
</tr>
<tr>
<td>CASE REPORTS</td>
</tr>
<tr>
<td>Possible interaction between muscle relaxants and the kallikrein-trypsin inactivator Trasylol</td>
</tr>
<tr>
<td>By G. Chasapakis, M.D., Department of Anaesthesia, Municipal Hospital, and C. Dimas, M.D., Department of Anaesthesia, Hippocration Hospital, Athens, Greece.</td>
</tr>
<tr>
<td>HISTORICAL</td>
</tr>
<tr>
<td>A history of nitrous oxide and oxygen anaesthesia. Part VIII: Twenty years of nitrous oxide anaesthesia in Great Britain</td>
</tr>
</tbody>
</table>
Some problems encountered in a severe case of tetanus

EDITORIAL

Standard terminology

ORIGINAL

Hyperventilation, brain damage and flicker
By J. G. Whitworth, M.B., Ch.B., M.R.C.P., F.F.A.R.C.S., R. B. Boettiner, M.D., Anita P. Gilger, M.D., and A. S. Littell, Sc.D., Anesthesia and Ophthalmology Services, Department of Surgery and Division of Biometry, Western Reserve University, Cleveland, Ohio, U.S.A.

Rate of rise of alveolar xenon concentration in man
By P. Gregory, M.S., R. O. Shargel, A.A.S., E. I. Eger II, M.D., and P. Pollat, Departments of Anesthesia, Cardiovascular Research Institute, and Pharmacology, University of California Medical Center, San Francisco, California, USA.

Quality of epidural blockade. II: Influence of physico-chemical factors; hyaluronidase and potassium
By P. R. Bromage, M.B., B.S., F.F.A.R.C.S., and M. P. Burfoot, B.M., B.Ch., D.A., Department of Anaesthesia, Royal Victoria Hospital, Montreal, Quebec, Canada.

The effect of various concentrations of nitrous oxide on the 24-hour explanted chick embryo

Effect of propranolol on catecholamine-induced arrhythmias during nitrous oxide-halothane anaesthesia in the dog
By P. L. Sharma, M.B., B.S., M.Sc., Ph.D.(Lond.), Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Chandigarh, India.
A study of the absorption and stability characteristics of sodium amazolene (Coomassie Blue) individually and in combination with indocyanine green (Cardio Green)

Detection of neuromuscular block in man: preliminary communication ...
By F. R. Berry, M.B., B.S., F.F.A.R.C.S., Physiological Laboratory and Department of Anaesthesia, University of Liverpool, England.

Experimental studies on intravenous regional anaesthesia using radioactive lignocaine
By S. Cotev, M.D., and G. C. Robin, F.R.C.S., Departments of Anaesthetics and Orthopaedic Surgery, Hadassah University Hospital, Jerusalem, Israel.

CLINICAL

Blood loss from conjunctival wounds: a comparison of halothane and trichloroethylene

Total anomalous pulmonary venous connection: postoperative pulmonary complications

HCISTORICAL

A history of nitrous oxide and oxygen anaesthesia. Part IX: The introduction of nitrous oxide and oxygen anaesthesia 950

PHYSICS

Physics applied to anaesthesia. VII: Physical optics, photometry and spectrophotometry 964

CASE REPORT

Massive pulmonary collapse during thoracotomy 973

APPARATUS

Some observations on the function of the Bird Mark 8 ventilator 977
“There is a primary difference of opinion, some holding that the sole knowledge necessary is derived from experience, others propounding that practice is not sufficient except after acquiring a reasoned knowledge of human bodies and of nature... I am of the opinion that the art of medicine ought to be rational.”

It would be difficult to improve upon this succinct statement of the relative importance of theoretical instruction and experience in the practice of medicine. It should, furthermore, be remembered that Celsus wrote at a time when there was relatively little of value for the teacher to impart, and the passage of the years has only emphasized the truth of his words.

Anaesthesia is not the only specialty which departs from the standpoint of Celsus, relying to a disproportionate extent on unsupported experience for teaching. Although it is an approach with certain virtues, a previous Editorial has argued the case for the combination of experience with theoretical instruction (March 1964).

It is commonplace to remark on the acceleration of progress in medical research, but the fact remains that advances in knowledge of anaesthesia within the last decade have outstripped the absorptive capacity of most of us. Most research workers have experienced the chagrin of discovering that many of their colleagues are unaware of the existence of their published work, which they often believe to contain matter of overt clinical significance. The failure of communication can seldom be ascribed to the research workers, many of whom are guilty of repetitive publication, with the same work appearing thinly disguised in a number of journals. Neither can responsibility reasonably be laid at the door of the reader. Which of us can cover the literature relevant to anaesthesia, even with the aid of abstracting services and a journal club? The solution to the problem is disarmingly simple. It is the teacher.

Teachers of anaesthesia have existed since 1846 but few can meet the full requirements of the student. The practical exponent of the “art of anaesthesia”, and the popular lecturer on “my method” have both a part to play but neither can tell the whole story. They require powerful reinforcement from those who are prepared to undertake the arduous and unglamorous task of remaining conversant with the basic sciences and other subjects relevant to the field of anaesthesia. They must be prepared to deliver a series of ever-changing lectures and tutorials, acting as interpreter between the research worker and the anaesthetist. Often they are greatly helped by review articles, symposia and monographs but they must accept the considerable responsibility of separating the true from the false and deciding what is of sufficient importance to impart.

The difficulties of teaching anaesthesia are not solved simply by assembling a cadre of dedicated teachers. The pupils are engaged in arduous and difficult work, in which the requirements of teaching take second place to discharging the clinical task. Furthermore, we must remember that the majority of young anaesthetists are employed away from teaching centres in small hospitals which lack the equipment and staffing structure which is required for systematic postgraduate teaching.

The first solution to this impasse was the development of full-time courses lasting a period of months. First-class contributions have been made by the World Health Organization at Copenhagen, the Royal College of Surgeons, and the Postgraduate Medical School at Hammersmith. However, these courses require that the student not only forgoes his salary but also in some cases must
meet the fee of the course. Such is the scale of the remuneration of the young specialist that few British graduates are able to avail themselves of the opportunities unless they are actively supported by their employers. Such support is seldom forthcoming, with the notable exception of the Armed Forces who have a keen appreciation of the importance of trained staff. Overseas students are in a happier position. Canadian and Australasian graduates appear able to accumulate sufficient fat for their support while other Commonwealth countries have been generous in financing the postgraduate education of their young specialists. A different approach has been that of the University of Liverpool which has for many years been running a part-time continuous course with systematic instruction in the morning and practical experience in the afternoon. Clearly important factors for success are the willingness of the authorities to grant a full salary for part-time clinical work, and the extent to which Regional Hospital Boards are being encouraged to permit a generous allowance of time off for trainees to attend courses. This principle seems to be gaining acceptance.

None of this is helpful to the registrar working in a peripheral hospital of this country, who depends upon his salary for the support of his family. Apart from what may be available in his own hospital, he may be able to attend meetings within the vicinity of his hospital. The Londoner here enjoys a tremendous advantage and the provincial must lean more heavily on short courses, of which the most important is that run by the Faculty of Anaesthetists of the Royal College of Surgeons. It is difficult to underestimate the importance of this course, which is for many the only formal postgraduate education they receive.

The most effective solution must undoubtedly lie within the regions and the appointment of Deans of postgraduate Education is an expression of this fact. Liverpool has long been the pioneer in regional systematic postgraduate education for anaesthetists in clinical appointments, and similar developments are under way in several other centres. It is not clear how much systematic instruction should be offered to the trainee anaesthetist but 100 lectures a year is probably the minimum worthwhile contribution to anaesthesia, a subject which overlaps so many branches of medicine. Let no one underestimate the task of preparing lectures on this scale. It can surely be accomplished by devoted clinicians but it may be asked whether this is not a job for the University Department of Anaesthesia acting in rapport with the Dean of Postgraduate Studies.

It is very doubtful whether postgraduate education should be relegated to evenings and weekends. After a day in the theatre, receptivity is low and staff are more difficult to attract; and anaesthetists are not alone in feeling the need of weekends for relaxation and for essential property maintenance that our incomes policy require the young doctor to carry out himself. The solution seems to be day or half-day release. There is no need to recoil from this revolutionary concept; nurses and technicians have been released for instruction for many years. It is perhaps more appropriate to wonder why trainee specialists have been denied this well-tried facility.

Finally we must consider the trainee in remote hospitals who cannot attend lectures at the University in his region. First, his plight must be recognized and steps taken to limit the duration of his stay in the periphery. Second, he should be generously considered for periodic study leave. Third, might it not be appropriate to consider the development of teaching machines for use in these circumstances? Many aspects of anaesthesia could be taught by this means, although the labour involved would be so great that economy would demand the widest possible distribution of the tapes.

Above all there should now be a general acceptance of the fact that unsupported clinical apprenticeship is not enough. Let us rather accept the challenge of providing systematic instruction under the difficult circumstances of anaesthesia and explore the means by which it may be achieved.